Research Article
BibTex RIS Cite

Determination Some Physical Properties of Ground NiMnCoSn Magnetic Shape Memory Alloy Powders

Year 2022, Volume: 17 Issue: 2, 151 - 160, 30.09.2022
https://doi.org/10.55525/tjst.1070478

Abstract

In this study, NiMnCoSn alloy was produced in the arc melting furnace and then grounded into small powder particles. After this procedure, particles of alloys were pelletized and heat treatment was applied to pellet alloys for 3 different temperatures (500 oC,700 oC and 900 oC). Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and physical property measuring system (PMMS) were used for determining physical properties of samples. The biggest feature of NiMn-based shape memory alloys is that they are magnetically based. The feature that distinguishes magnetic shape memory alloys from traditional ones is that the shape memory effect is magnetic. For this reason, studies of NiMn-based alloys are becoming very popular. It was observed that, grounding procedure is effected all physical properties of NiMnSnCo shape memory alloys, seriously.

References

  • Addington, D.M. and D.L. Schodek, Smart materials and new technologies: for the architecture and design professions. 2005: Routledge.
  • Gandhi, M.V. and B. Thompson, Smart materials and structures. 1992: Springer Science & Business Media.
  • Sullivan, M.R., A.A. Shah, and H.D. Chopra, Pathways of structural and magnetic transition in ferromagnetic shape-memory alloys. Physical Review B, 2004. 70(9): p. 094428.
  • Schetky, L.M., Shape‐memory alloys. Kirk‐Othmer Encyclopedia of Chemical Technology, 2000.
  • Aydogdu, Y., et al., The effect of Sn content on mechanical, magnetization and shape memory behavior in NiMnSn alloys. Journal of Alloys and Compounds, 2016. 683: p. 339-345.
  • Esmaeli, A., New worm robot structure using the shape-memory alloy. Majlesi Journal of Electrical Engineering, 2014. 8(2).
  • Bruno, N., et al., On the microstructural origins of martensitic transformation arrest in a NiCoMnIn magnetic shape memory alloy. Acta Materialia, 2018. 142: p. 95-106.
  • Duerig, T.W., K. Melton, and D. Stöckel, Engineering aspects of shape memory alloys. 2013: Butterworth-heinemann.
  • Xuan, H., et al., Effect of annealing on the martensitic transformation and magnetocaloric effect in Ni 44.1 Mn 44.2 Sn 11.7 ribbons. Applied Physics Letters, 2008. 92(24): p. 242506.
  • Planes, A., et al., Magnetostructural tweed in ferromagnetic Heusler shape-memory alloys. Materials Science and Engineering: A, 2006. 438: p. 916-918.
  • Ma, Y. and J. Li, A constrained theory on actuation strain in ferromagnetic shape memory alloys induced by domain switching. Acta materialia, 2007. 55(9): p. 3261-3269.
  • Huang, L., et al., Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy. Journal of Alloys and Compounds, 2015. 647: p. 1081-1085.
  • GschneidnerJr, K.A., V. Pecharsky, and A. Tsokol, Recent developments in magnetocaloric materials. Reports on progress in physics, 2005. 68(6): p. 1479.
  • Zimm, C., et al., Description and performance of a near-room temperature magnetic refrigerator, in Advances in cryogenic engineering. 1998, Springer. p. 1759-1766.
  • Shen, B., et al., Recent progress in exploring magnetocaloric materials. Advanced Materials, 2009. 21(45): p. 4545-4564.
  • Kainuma, R., et al., Metamagnetic shape memory effect in a Heusler-type Ni 43 Co 7 Mn 39 Sn 11 polycrystalline alloy. Applied Physics Letters, 2006. 88(19): p. 192513.
  • Kök, M., G. Pirge, and Y. Aydoğdu, Isothermal oxidation study on NiMnGa ferromagnetic shape memory alloy at 600–1000° C. Applied surface science, 2013. 268: p. 136-140.
  • Li, D., et al., Effects of high magnetic field annealing on texture and magnetic properties of FePd. Journal of magnetism and magnetic materials, 2004. 281(2-3): p. 272- 275.
  • Oikawa, K., et al., Phase equilibria and phase transformation of Co− Ni− Ga ferromagnetic shape memory alloy system. Journal of phase equilibria and diffusion, 2006. 27(1): p. 75-82.
  • Kainuma, R., et al., Magnetic-field-induced shape recovery by reverse phase transformation. Nature, 2006. 439(7079): p. 957-960.
  • Karaca, H.E., et al., Magnetic Field‐Induced Phase Transformation in NiMnCoIn Magnetic Shape‐Memory Alloys—A New Actuation Mechanism with Large Work Output. Advanced Functional Materials, 2009. 19(7): p. 983-998.
  • Han, Z., et al., Low-field inverse magnetocaloric effect in Ni 50− x Mn 39+ x Sn 11 Heusler alloys. Applied Physics Letters, 2007. 90(4): p. 042507.
  • Khovaylo, V., et al., Peculiarities of the magnetocaloric properties in Ni-Mn-Sn ferromagnetic shape memory alloys. Physical Review B, 2010. 81(21): p. 214406.
  • Choon, T.W., et al., Phase transformation temperatures for shape memory alloy wire. World Academy of Science, Engineering and Technology, 2007. 25(304).
  • Altın, S., Süper iletken BSCCO whiskerlerin büyüme mekanizması ve farklı katkılamalara bağlı olarak elektriksel ve manyetik özellikleri. 2009.
  • Elwindari, N., et al. Microstructure and Magnetic Properties of Optimally Annealed Ni43Mn41Co5Sn11Heusler Alloy. in IOP Conference Series: Materials Science and Engineering. 2017. IOP Publishing.
  • Chen, F., et al., Martensitic transformation and magnetic properties of Ti-doped NiCoMnSn shape memory alloy. Rare Metals, 2014. 33(5): p. 511-515.
  • Mishra, S.S., et al., Rapidly Quenched Ni45Fe5Mn40Sn10 Heusler Alloys. Materials Research, 2015. 18: p. 101-105.
  • Kök, M., et al., Effects of Aging on Magnetic and Thermal Characteristics of NiMnCoSn Magnetic Shape Memory Alloys. Iranian Journal of Science and Technology, Transactions A: Science, 2021: p. 1-9.
  • Kök, M., G. Pirge, and Y. Aydoğdu, Isothermal oxidation study on NiMnGa ferromagnetic shape memory alloy at 600–1000 C. Applied Surface Science, 2013. 268: p. 136-140.
  • Lu, H., W. Zheng, and Q. Jiang, Saturation magnetization of ferromagnetic and ferrimagnetic nanocrystals at room temperature. Journal of Physics D: Applied Physics, 2007. 40(2): p. 320.
Year 2022, Volume: 17 Issue: 2, 151 - 160, 30.09.2022
https://doi.org/10.55525/tjst.1070478

Abstract

References

  • Addington, D.M. and D.L. Schodek, Smart materials and new technologies: for the architecture and design professions. 2005: Routledge.
  • Gandhi, M.V. and B. Thompson, Smart materials and structures. 1992: Springer Science & Business Media.
  • Sullivan, M.R., A.A. Shah, and H.D. Chopra, Pathways of structural and magnetic transition in ferromagnetic shape-memory alloys. Physical Review B, 2004. 70(9): p. 094428.
  • Schetky, L.M., Shape‐memory alloys. Kirk‐Othmer Encyclopedia of Chemical Technology, 2000.
  • Aydogdu, Y., et al., The effect of Sn content on mechanical, magnetization and shape memory behavior in NiMnSn alloys. Journal of Alloys and Compounds, 2016. 683: p. 339-345.
  • Esmaeli, A., New worm robot structure using the shape-memory alloy. Majlesi Journal of Electrical Engineering, 2014. 8(2).
  • Bruno, N., et al., On the microstructural origins of martensitic transformation arrest in a NiCoMnIn magnetic shape memory alloy. Acta Materialia, 2018. 142: p. 95-106.
  • Duerig, T.W., K. Melton, and D. Stöckel, Engineering aspects of shape memory alloys. 2013: Butterworth-heinemann.
  • Xuan, H., et al., Effect of annealing on the martensitic transformation and magnetocaloric effect in Ni 44.1 Mn 44.2 Sn 11.7 ribbons. Applied Physics Letters, 2008. 92(24): p. 242506.
  • Planes, A., et al., Magnetostructural tweed in ferromagnetic Heusler shape-memory alloys. Materials Science and Engineering: A, 2006. 438: p. 916-918.
  • Ma, Y. and J. Li, A constrained theory on actuation strain in ferromagnetic shape memory alloys induced by domain switching. Acta materialia, 2007. 55(9): p. 3261-3269.
  • Huang, L., et al., Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy. Journal of Alloys and Compounds, 2015. 647: p. 1081-1085.
  • GschneidnerJr, K.A., V. Pecharsky, and A. Tsokol, Recent developments in magnetocaloric materials. Reports on progress in physics, 2005. 68(6): p. 1479.
  • Zimm, C., et al., Description and performance of a near-room temperature magnetic refrigerator, in Advances in cryogenic engineering. 1998, Springer. p. 1759-1766.
  • Shen, B., et al., Recent progress in exploring magnetocaloric materials. Advanced Materials, 2009. 21(45): p. 4545-4564.
  • Kainuma, R., et al., Metamagnetic shape memory effect in a Heusler-type Ni 43 Co 7 Mn 39 Sn 11 polycrystalline alloy. Applied Physics Letters, 2006. 88(19): p. 192513.
  • Kök, M., G. Pirge, and Y. Aydoğdu, Isothermal oxidation study on NiMnGa ferromagnetic shape memory alloy at 600–1000° C. Applied surface science, 2013. 268: p. 136-140.
  • Li, D., et al., Effects of high magnetic field annealing on texture and magnetic properties of FePd. Journal of magnetism and magnetic materials, 2004. 281(2-3): p. 272- 275.
  • Oikawa, K., et al., Phase equilibria and phase transformation of Co− Ni− Ga ferromagnetic shape memory alloy system. Journal of phase equilibria and diffusion, 2006. 27(1): p. 75-82.
  • Kainuma, R., et al., Magnetic-field-induced shape recovery by reverse phase transformation. Nature, 2006. 439(7079): p. 957-960.
  • Karaca, H.E., et al., Magnetic Field‐Induced Phase Transformation in NiMnCoIn Magnetic Shape‐Memory Alloys—A New Actuation Mechanism with Large Work Output. Advanced Functional Materials, 2009. 19(7): p. 983-998.
  • Han, Z., et al., Low-field inverse magnetocaloric effect in Ni 50− x Mn 39+ x Sn 11 Heusler alloys. Applied Physics Letters, 2007. 90(4): p. 042507.
  • Khovaylo, V., et al., Peculiarities of the magnetocaloric properties in Ni-Mn-Sn ferromagnetic shape memory alloys. Physical Review B, 2010. 81(21): p. 214406.
  • Choon, T.W., et al., Phase transformation temperatures for shape memory alloy wire. World Academy of Science, Engineering and Technology, 2007. 25(304).
  • Altın, S., Süper iletken BSCCO whiskerlerin büyüme mekanizması ve farklı katkılamalara bağlı olarak elektriksel ve manyetik özellikleri. 2009.
  • Elwindari, N., et al. Microstructure and Magnetic Properties of Optimally Annealed Ni43Mn41Co5Sn11Heusler Alloy. in IOP Conference Series: Materials Science and Engineering. 2017. IOP Publishing.
  • Chen, F., et al., Martensitic transformation and magnetic properties of Ti-doped NiCoMnSn shape memory alloy. Rare Metals, 2014. 33(5): p. 511-515.
  • Mishra, S.S., et al., Rapidly Quenched Ni45Fe5Mn40Sn10 Heusler Alloys. Materials Research, 2015. 18: p. 101-105.
  • Kök, M., et al., Effects of Aging on Magnetic and Thermal Characteristics of NiMnCoSn Magnetic Shape Memory Alloys. Iranian Journal of Science and Technology, Transactions A: Science, 2021: p. 1-9.
  • Kök, M., G. Pirge, and Y. Aydoğdu, Isothermal oxidation study on NiMnGa ferromagnetic shape memory alloy at 600–1000 C. Applied Surface Science, 2013. 268: p. 136-140.
  • Lu, H., W. Zheng, and Q. Jiang, Saturation magnetization of ferromagnetic and ferrimagnetic nanocrystals at room temperature. Journal of Physics D: Applied Physics, 2007. 40(2): p. 320.
There are 31 citations in total.

Details

Primary Language English
Journal Section TJST
Authors

Ecem Özen Öner 0000-0001-7687-9021

Muhammed Kanca 0000-0002-2987-4284

Yakup Say 0000-0001-5005-8516

Publication Date September 30, 2022
Submission Date February 9, 2022
Published in Issue Year 2022 Volume: 17 Issue: 2

Cite

APA Özen Öner, E., Kanca, M., & Say, Y. (2022). Determination Some Physical Properties of Ground NiMnCoSn Magnetic Shape Memory Alloy Powders. Turkish Journal of Science and Technology, 17(2), 151-160. https://doi.org/10.55525/tjst.1070478
AMA Özen Öner E, Kanca M, Say Y. Determination Some Physical Properties of Ground NiMnCoSn Magnetic Shape Memory Alloy Powders. TJST. September 2022;17(2):151-160. doi:10.55525/tjst.1070478
Chicago Özen Öner, Ecem, Muhammed Kanca, and Yakup Say. “Determination Some Physical Properties of Ground NiMnCoSn Magnetic Shape Memory Alloy Powders”. Turkish Journal of Science and Technology 17, no. 2 (September 2022): 151-60. https://doi.org/10.55525/tjst.1070478.
EndNote Özen Öner E, Kanca M, Say Y (September 1, 2022) Determination Some Physical Properties of Ground NiMnCoSn Magnetic Shape Memory Alloy Powders. Turkish Journal of Science and Technology 17 2 151–160.
IEEE E. Özen Öner, M. Kanca, and Y. Say, “Determination Some Physical Properties of Ground NiMnCoSn Magnetic Shape Memory Alloy Powders”, TJST, vol. 17, no. 2, pp. 151–160, 2022, doi: 10.55525/tjst.1070478.
ISNAD Özen Öner, Ecem et al. “Determination Some Physical Properties of Ground NiMnCoSn Magnetic Shape Memory Alloy Powders”. Turkish Journal of Science and Technology 17/2 (September 2022), 151-160. https://doi.org/10.55525/tjst.1070478.
JAMA Özen Öner E, Kanca M, Say Y. Determination Some Physical Properties of Ground NiMnCoSn Magnetic Shape Memory Alloy Powders. TJST. 2022;17:151–160.
MLA Özen Öner, Ecem et al. “Determination Some Physical Properties of Ground NiMnCoSn Magnetic Shape Memory Alloy Powders”. Turkish Journal of Science and Technology, vol. 17, no. 2, 2022, pp. 151-60, doi:10.55525/tjst.1070478.
Vancouver Özen Öner E, Kanca M, Say Y. Determination Some Physical Properties of Ground NiMnCoSn Magnetic Shape Memory Alloy Powders. TJST. 2022;17(2):151-60.