Research Article
BibTex RIS Cite
Year 2022, Volume: 17 Issue: 2, 329 - 341, 30.09.2022
https://doi.org/10.55525/tjst.1108761

Abstract

References

  • Referans1 J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials and Design. 56 (2014) 1078–1113. https://doi.org/10.1016/j.matdes.2013.11.084.
  • Referans2 K. Otsuka, C.M. Wayman, Shape memory materials, Cambridge University Press, 1999.
  • Referans3 A. Concilio, V. Antonucci, F. Auricchio, L. Lecce, E. (Eds. ). Sacco, Shape Memory Alloy Engineering, 2nd ed., Elsevier, 2021. https://doi.org/10.1016/C2018-0-02430-5. Referans4J. Ma, I. Karaman, R.D. Noebe, High temperature shape memory alloys, International Materials Reviews. 55 (2010) 257–315. https://doi.org/10.1179/095066010X12646898728363.
  • Referans5 A. Rao, A.R. Srinivasa, J.N. Reddy, Introduction to shape memory alloys, SpringerBriefs in Applied Sciences and Technology. (2015) 1–31. https://doi.org/10.1007/978-3-319-03188-0_1. Referans6 Y.Q. Fu, J.K. Luo, A.J. Flewitt, W.M. Huang, S. Zhang, H.J. Du, W.I. Milne, Thin film shape memory alloys and microactuators, Int. J. Computational Materials Science and Surface Engineering. 2 (2009) 208–226. https://doi.org/10.1504/IJCMSSE.2009.027483.
  • Referans7 P. Krulevitch, A.P. Lee, P.B. Ramsey, J.C. Trevino, J. Hamilton, M. Allen, Thin film shape memory alloy microactuators, 1996. https://doi.org/10.1109/84.546407.
  • Referans8 E. Patoor, D.C. Lagoudas, P.B. Entchev, L.C. Brinson, X. Gao, Shape memory alloys, Part I: General properties and modeling of single crystals, Mechanics of Materials. 38 (2006) 391–429. https://doi.org/10.1016/j.mechmat.2005.05.027.
  • Referans9 J.M. San Juan, M.L. Nó, C.A. Schuh, Superelasticity and shape memory in micro- and nanometer-scale pillars, Advanced Materials. 20 (2008) 272–278. https://doi.org/10.1002/adma.200701527.
  • Referans10 N. Choudhary, D. Kaur, Shape memory alloy thin films and heterostructures for MEMS applications: A review, Sensors and Actuators, A: Physical. 242 (2016) 162–181. https://doi.org/10.1016/j.sna.2016.02.026.
  • Referans11 I. Stachiv, E. Alarcon, M. Lamac, Shape memory alloys and polymers for mems/nems applications: Review on recent findings and challenges in design, preparation, and characterization, Metals (Basel). 11 (2021) 1–28. https://doi.org/10.3390/met11030415.
  • Referans12 S. Najah Saud Al-Humairi, Cu-Based Shape Memory Alloys: Modified Structures and Their Related Properties, in: Recent Advancements in the Metallurgical Engineering and Electrodeposition, IntechOpen, 2020. https://doi.org/10.5772/intechopen.86193.
  • Referans13 R. Dasgupta, A look into Cu-based shape memory alloys: Present scenario and future prospects, Journal of Materials Research. 29 (2014) 1681–1698. https://doi.org/10.1557/jmr.2014.189.
  • Referans14 K.K. Alaneme, J.U. Anaele, E.A. Okotete, Martensite aging phenomena in Cu-based alloys: Effects on structural transformation, mechanical and shape memory properties: A critical review, Sci Afr. 12 (2021). https://doi.org/10.1016/j.sciaf.2021.e00760.
  • Referans15 C.A. Canbay, O. Karaduman, N. Ünlü, S.A. Baiz, İ. Özkul, Heat treatment and quenching media effects on the thermodynamical, thermoelastical and structural characteristics of a new Cu-based quaternary shape memory alloy, Composites Part B: Engineering. 174 (2019) 106940. https://doi.org/10.1016/j.compositesb.2019.106940.
  • Referans16 O. Karaduman, C. Aksu Canbay, N. Ünlü, S. Özkul, Analysis of a newly composed Cu-Al-Mn SMA showing acute SME characteristics, in: AIP Conference Proceedings, American Institute of Physics Inc., 2019. https://doi.org/10.1063/1.5135437.
  • Referans17 S.N. Saud, E. Hamzah, T.A. Abu Bakar, A. Abdolahi, Influence of addition of carbon nanotubes on structure-properties of Cu-Al-Ni shape memory alloys, Materials Science and Technology (United Kingdom). 30 (2014) 458–464. https://doi.org/10.1179/1743284713Y.0000000379.
  • Referans18 U.S. Mallik, V. Sampath, Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu-Al-Mn shape memory alloy, Journal of Alloys and Compounds. 469 (2009) 156–163. https://doi.org/10.1016/j.jallcom.2008.01.128.
  • Referans19 R.O. Ferreira, L.S. Silva, R.A.G. Silva, Thermal behavior of as-annealed CuAlMnAgZr alloys, Journal of Thermal Analysis and Calorimetry. 146 (2021) 595–600. https://doi.org/10.1007/s10973-020-10002-8.
  • Referans20 S. Karthick, S. Shalini, S.S. Mani Prabu, K. Suhel, A. Vandan, C. Puneet, S. Manoj Kumar, R. Venkatesh, I.A. Palani, Influence of quaternary alloying addition on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy coated optical fiber, Measurement: Journal of the International Measurement Confederation. 153 (2020). https://doi.org/10.1016/j.measurement.2019.107379.
  • Referans21 Y. Motemani, P.J.S. Buenconsejo, A. Ludwig, Recent Developments in High-Temperature Shape Memory Thin Films, Shape Memory and Superelasticity. 1 (2015). https://doi.org/10.1007/s40830-015-0041-0.
  • Referans22 Y.Q. Fu, J.K. Luo, W.M. Huang, A.J. Flewitt, W.I. Milne, Thin film shape memory alloys for optical sensing applications, Journal of Physics: Conference Series. 76 (2007). https://doi.org/10.1088/1742-6596/76/1/012032.
  • Referans23 C.A. Canbay, A. Tataroğlu, W.A. Farooq, A. Dere, A. Karabulut, M. Atif, A. Hanif, CuAlMnV shape memory alloy thin film based photosensitive diode, Materials Science in Semiconductor Processing. 107 (2020) 104858. https://doi.org/10.1016/J.MSSP.2019.104858.
  • Referans24 A. Isalgue, V. Torra, J.-L. Seguin, M. Bendahan, J.M. Amigo, V. Esteve-Cano, Shape memory NiTi thin films deposited at low temperature, Materials Science and Engineering A. 273–275 (1999) 717–721. https://doi.org/10.1016/S0921-5093(99)00403-7.
  • Referans25 J.A. Walker, K.J. Gabriel, M. Mehregany, Thin-film processing of TiNi shape memory alloy, Sensors and Actuators A: Physical. 21 (1990). https://doi.org/10.1016/0924-4247(90)85047-8.
  • Referans26 M. Bendahan, J.L. Seguin, D. Lollman, H. Carchano, New type of Schottky barriers using NiTi shape memory alloy films, Thin Solid Films. 294 (1997) 278–280. https://doi.org/10.1016/S0040-6090(96)09230-9.
  • Referans27 M. Geetha, K. Dhanalakshmi, S. Jayachandran, I.A. Palani, V. Sathish Kumar, Analysis of actuation characteristics of CuAlNiMn/Polyimide thin film shape memory alloy, Materials Today: Proceedings. 46 (2021) 9580–9585. https://doi.org/10.1016/j.matpr.2020.04.689.
  • Referans28 C.A. Canbay, O. Karaduman, The photo response properties of shape memory alloy thin film based photodiode, Journal of Molecular Structure. 1235 (2021) 130263. https://doi.org/10.1016/j.molstruc.2021.130263.
  • Referans29 Q. Pan, C. Cho, The Investigation of a Shape Memory Alloy Micro-Damper for MEMS Applications, Sensors. 7 (2007). https://doi.org/10.3390/s7091887.
  • Referans30 M. Kabla, E. Ben-David, D. Shilo, A novel shape memory alloy microactuator for large in-plane strokes and forces, Smart Materials and Structures. 25 (2016). https://doi.org/10.1088/0964-1726/25/7/075020.
  • Referans31 K.R.C. Gisser, J.D. Busch, A.D. Johnson, A.B. Ellis, Oriented nickel-titanium shape memory alloy films prepared by annealing during deposition, Applied Physics Letters. 61 (1992) 1632–1634. https://doi.org/10.1063/1.108434.
  • Referans32 A.P. Jardine, H. Zhang, L.D. Wasielesky, Investigations into the thin-film fabrication of intermetallic NiTi, Mat. Res. Soc. Symp. Proc. 187 (1990) 181–186. https://doi.org/10.1557/PROC-187-181.
  • Referans33 C.A. Canbay, A. Tataroglu, A. Dere, A. Al-Ghamdi, F. Yakuphanoglu, A new shape memory alloy film/p-Si solar light four quadrant detector for solar tracking applications, Journal of Alloys and Compounds. 688 (2016) 762–768. https://doi.org/10.1016/J.JALLCOM.2016.07.087.
  • Referans34 C. Aksu Canbay, A. Dere, K. Mensah-Darkwa, A. Al-Ghamdi, Z. Karagoz Genç, R.K. Gupta, F. Yakuphanoglu, New type of Schottky diode-based Cu–Al–Mn–Cr shape memory material films, Applied Physics A: Materials Science and Processing. 122 (2016). https://doi.org/10.1007/s00339-016-0208-3.
  • Referans35 C.A. Canbay, A. Tataroğlu, A. Dere, A.G. Al-Sehemi, A. Karabulut, A.A. Al-Ghamdi, F. Yakuphanoglu, Electrical, kinetic and photoelectrical properties of CuAlMnMg shape memory alloy/n-Si Schottky diode, Journal of Alloys and Compounds. 888 (2021) 161600. https://doi.org/10.1016/J.JALLCOM.2021.161600.
  • Referans36 C. Aksu Canbay, A. Dere, K. Mensah-Darkwa, A. Al-Ghamdi, Z. Karagoz Genç, R.K. Gupta, F. Yakuphanoglu, New type of Schottky diode-based Cu–Al–Mn–Cr shape memory material films, Applied Physics A: Materials Science and Processing. 122 (2016). https://doi.org/10.1007/s00339-016-0208-3.
  • Referans37 O. Karaduman, İ. Özkul, C.A. Canbay, Shape memory effect characterization of a ternary CuAlNi high temperature SMA ribbons produced by melt spinning method, Advanced Engineering Science. 1 (2021) 26–33. http://publish.mersin.edu.tr/index.php/ades.
  • Referans38 C.A. Canbay, O. Karaduman, N. Ünlü, İ. Özkul, M.A. Çiçek, Energetic Behavior Study in Phase Transformations of High Temperature Cu–Al–X (X: Mn, Te, Sn, Hf) Shape Memory Alloys, Transactions of the Indian Institute of Metals. (2021). https://doi.org/10.1007/S12666-021-02241-6.
  • Referans39 E. Aldirmaz, M. Guler, E. Guler, A. Dere, A. Tataroğlu, A.G. Al-Sehemi, A.A. Al-Ghamdi, F. Yakuphanoglu, A shape memory alloy based on photodiode for optoelectronic applications, Journal of Alloys and Compounds. 743 (2018) 227–233. https://doi.org/10.1016/J.JALLCOM.2018.01.380.
  • Referans40 P. Cova, A. Singh, A. Medina, R.A. Masut, Effect of doping on the forward current-transport mechanisms in a metal–insulator–semiconductor contact to InP:Zn grown by metal organic vapor phase epitaxy, Solid-State Electronics. 42 (1998) 477–485. https://doi.org/10.1016/S0038-1101(97)00250-5.
  • Referans41 S.M. Sze, K.N. Kwok, Physics of Semiconductor Devices, 3rd ed., John Wiley Sons Inc., Hoboken, New Jersey, 2006.
  • Referans42 A. Tataroǧlu, F.Z. Pür, The Richardson constant and barrier inhomogeneity at Au/Si 3N4/n-Si (MIS) Schottky diodes, Physica Scripta. 88 (2013). https://doi.org/10.1088/0031-8949/88/01/015801.
  • Referans43 S. Riazimehr, S. Kataria, J.M. Gonzalez-Medina, S. Wagner, M. Shaygan, S. Suckow, F.G. Ruiz, O. Engström, A. Godoy, M.C. Lemme, High Responsivity and Quantum Efficiency of Graphene/Silicon Photodiodes Achieved by Interdigitating Schottky and Gated Regions, ACS Photonics. 6 (2019) 107–115. https://doi.org/10.1021/acsphotonics.8b00951.
  • Referans44 V. Balasubramani, J. Chandrasekaran, T.D. Nguyen, S. Maruthamuthu, R. Marnadu, P. Vivek, S. Sugarthi, Colossal photosensitive boost in Schottky diode behaviour with Ce-V2O5 interfaced layer of MIS structure, Sensors and Actuators, A: Physical. 315 (2020). https://doi.org/10.1016/j.sna.2020.112333.
  • Referans45 S. Ruzgar, M. Caglar, Fabrication and characterization of solution processed Al/Sn:ZnO/p-Si photodiodes, Materials Science in Semiconductor Processing. 115 (2020) 105076. https://doi.org/10.1016/j.mssp.2020.105076.
  • Referans46 A.G. Imer, E. Kaya, A. Dere, A.G. Al-Sehemi, A.A. Al-Ghamdi, A. Karabulut, F. Yakuphanoglu, Illumination impact on the electrical characteristics of Au/Sunset Yellow/n-Si/Au hybrid Schottky diode, Journal of Materials Science: Materials in Electronics. 31 (2020) 14665–14673. https://doi.org/10.1007/s10854-020-04029-8.
  • Referans47 P. Vivek, J. Chandrasekaran, R. Marnadu, S. Maruthamuthu, Fabrication of Illumination-Dependent Cu/p-Si Schottky Barrier Diodes by Sandwiching MoO 3 Nanoplates as an Interfacial Layer via JNSP Technique, (n.d.). https://doi.org/10.1007/s11664-020-08137-3.
  • Referans48 V. Balasubramani, J. Chandrasekaran, V. Manikandan, T.K. Le, R. Marnadu, P. Vivek, Upgraded photosensitivity under the influence of Yb doped on V2O5 thin films as an interfacial layer in MIS type Schottky barrier diode as photodiode application, Journal of Solid State Chemistry. 301 (2021). https://doi.org/10.1016/j.jssc.2021.122289.
  • Referans49 U.Y. Won, B.H. Lee, Y.R. Kim, W.T. Kang, I. Lee, J.E. Kim, Y.H. Lee, W.J. Yu, Efficient photovoltaic effect in graphene/h-BN/silicon heterostructure self-powered photodetector, Nano Research. 14 (2021) 1967–1972. https://doi.org/10.1007/s12274-020-2866-x.
  • Referans50 F. Gul, A simplified method to determine carrier transport mechanisms of metal-oxide resistive random access memory (RRAM) devices, in: Materials Today: Proceedings, Elsevier Ltd, 2021: pp. 6976–6978. https://doi.org/10.1016/j.matpr.2021.03.274.
  • Referans51 Z. Çaldiran, M. Şinoforoʇlu, Ö. Metin, Ş. Aydoʇan, K. Meral, Space charge limited current mechanism (SCLC) in the graphene oxide-Fe3O4 nanocomposites/n-Si heterojunctions, Journal of Alloys and Compounds. 631 (2015) 261–265. https://doi.org/10.1016/j.jallcom.2015.01.117.
  • Referans52 F.C. Chiu, A review on conduction mechanisms in dielectric films, Advances in Materials Science and Engineering. 2014 (2014). https://doi.org/10.1155/2014/578168.
  • Referans53 C.A. Arredondo, G. Gordillo, Photoconductive and electrical transport properties of AgInSe2 thin films prepared by co-evaporation, Physica B: Condensed Matter. 405 (2010) 3694–3699. https://doi.org/10.1016/j.physb.2010.05.068.
  • Referans54 N. Shiwakoti, A. Bobby, K. Asokan, B. Antony, Temperature dependent dielectric studies of Ni/n-GaP Schottky diodes by capacitance and conductance measurements, Materials Science in Semiconductor Processing. 42 (2016) 378–382. https://doi.org/10.1016/j.mssp.2015.11.010.

Photo-electrical Characterization of New CuAlNi/n-Si/Al Schottky Photodiode Fabricated by Coating Thin-Film Smart Material

Year 2022, Volume: 17 Issue: 2, 329 - 341, 30.09.2022
https://doi.org/10.55525/tjst.1108761

Abstract

Micro/nano scale thin-film shape memory alloys (SMAs) have been used in many different miniaturized systems. Using them as thin-film metal components in fabrication of Schottky photodiodes has started a few years ago. In this work, a new SMA-photodiode device with CuAlNi/n-Si/Al structure was produced by coating nano-thick CuAlNi SMA film onto n-Si wafer substrate via thermal evaporation. The photoelectrical I-V, C-V and I-t photodiode signalization tests were performed under dark and varied artifical light power intensities in room conditions. It was observed that the new device exhibited photoconductive, photovoltaic and capacitive behaviors. By using conventional I-V method, the diode parameters such as electrical ideality factor (n), Schottky barrier height (ϕb) and rectification ratio (RR) of the produced photodevice for the condition of dark environment were computed as 12.5, 0.599 eV and 1266, respectively. As good figure of merits, the photodiode’s performance parameters of responsivity (Rph), photosensivity (%PS) and spesific detectivity (D*) maxima values determined for at -5 V reverse voltage bias and under 100 mW/cm2 of light power intensity condition are as 0.030 A/W (or 30 mA/W), 18693 and 1.33×1010 Jones, respectively. The current conduction mechanism analysis revealed that the space charge limited conduction (SCLC) mechanism is the dominant current conduction mechanism. By the drawn reverse squared C-2-V plots, the values of diffusion potential (Vd), donor concentration (ND), Fermi level (EF) and also barrier height (ϕb) were determined for the SMA-photodiode. The results indicated that the new SMA-photodiode device can be useful in optoelectronic communication systems and photosensing applications.

References

  • Referans1 J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials and Design. 56 (2014) 1078–1113. https://doi.org/10.1016/j.matdes.2013.11.084.
  • Referans2 K. Otsuka, C.M. Wayman, Shape memory materials, Cambridge University Press, 1999.
  • Referans3 A. Concilio, V. Antonucci, F. Auricchio, L. Lecce, E. (Eds. ). Sacco, Shape Memory Alloy Engineering, 2nd ed., Elsevier, 2021. https://doi.org/10.1016/C2018-0-02430-5. Referans4J. Ma, I. Karaman, R.D. Noebe, High temperature shape memory alloys, International Materials Reviews. 55 (2010) 257–315. https://doi.org/10.1179/095066010X12646898728363.
  • Referans5 A. Rao, A.R. Srinivasa, J.N. Reddy, Introduction to shape memory alloys, SpringerBriefs in Applied Sciences and Technology. (2015) 1–31. https://doi.org/10.1007/978-3-319-03188-0_1. Referans6 Y.Q. Fu, J.K. Luo, A.J. Flewitt, W.M. Huang, S. Zhang, H.J. Du, W.I. Milne, Thin film shape memory alloys and microactuators, Int. J. Computational Materials Science and Surface Engineering. 2 (2009) 208–226. https://doi.org/10.1504/IJCMSSE.2009.027483.
  • Referans7 P. Krulevitch, A.P. Lee, P.B. Ramsey, J.C. Trevino, J. Hamilton, M. Allen, Thin film shape memory alloy microactuators, 1996. https://doi.org/10.1109/84.546407.
  • Referans8 E. Patoor, D.C. Lagoudas, P.B. Entchev, L.C. Brinson, X. Gao, Shape memory alloys, Part I: General properties and modeling of single crystals, Mechanics of Materials. 38 (2006) 391–429. https://doi.org/10.1016/j.mechmat.2005.05.027.
  • Referans9 J.M. San Juan, M.L. Nó, C.A. Schuh, Superelasticity and shape memory in micro- and nanometer-scale pillars, Advanced Materials. 20 (2008) 272–278. https://doi.org/10.1002/adma.200701527.
  • Referans10 N. Choudhary, D. Kaur, Shape memory alloy thin films and heterostructures for MEMS applications: A review, Sensors and Actuators, A: Physical. 242 (2016) 162–181. https://doi.org/10.1016/j.sna.2016.02.026.
  • Referans11 I. Stachiv, E. Alarcon, M. Lamac, Shape memory alloys and polymers for mems/nems applications: Review on recent findings and challenges in design, preparation, and characterization, Metals (Basel). 11 (2021) 1–28. https://doi.org/10.3390/met11030415.
  • Referans12 S. Najah Saud Al-Humairi, Cu-Based Shape Memory Alloys: Modified Structures and Their Related Properties, in: Recent Advancements in the Metallurgical Engineering and Electrodeposition, IntechOpen, 2020. https://doi.org/10.5772/intechopen.86193.
  • Referans13 R. Dasgupta, A look into Cu-based shape memory alloys: Present scenario and future prospects, Journal of Materials Research. 29 (2014) 1681–1698. https://doi.org/10.1557/jmr.2014.189.
  • Referans14 K.K. Alaneme, J.U. Anaele, E.A. Okotete, Martensite aging phenomena in Cu-based alloys: Effects on structural transformation, mechanical and shape memory properties: A critical review, Sci Afr. 12 (2021). https://doi.org/10.1016/j.sciaf.2021.e00760.
  • Referans15 C.A. Canbay, O. Karaduman, N. Ünlü, S.A. Baiz, İ. Özkul, Heat treatment and quenching media effects on the thermodynamical, thermoelastical and structural characteristics of a new Cu-based quaternary shape memory alloy, Composites Part B: Engineering. 174 (2019) 106940. https://doi.org/10.1016/j.compositesb.2019.106940.
  • Referans16 O. Karaduman, C. Aksu Canbay, N. Ünlü, S. Özkul, Analysis of a newly composed Cu-Al-Mn SMA showing acute SME characteristics, in: AIP Conference Proceedings, American Institute of Physics Inc., 2019. https://doi.org/10.1063/1.5135437.
  • Referans17 S.N. Saud, E. Hamzah, T.A. Abu Bakar, A. Abdolahi, Influence of addition of carbon nanotubes on structure-properties of Cu-Al-Ni shape memory alloys, Materials Science and Technology (United Kingdom). 30 (2014) 458–464. https://doi.org/10.1179/1743284713Y.0000000379.
  • Referans18 U.S. Mallik, V. Sampath, Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu-Al-Mn shape memory alloy, Journal of Alloys and Compounds. 469 (2009) 156–163. https://doi.org/10.1016/j.jallcom.2008.01.128.
  • Referans19 R.O. Ferreira, L.S. Silva, R.A.G. Silva, Thermal behavior of as-annealed CuAlMnAgZr alloys, Journal of Thermal Analysis and Calorimetry. 146 (2021) 595–600. https://doi.org/10.1007/s10973-020-10002-8.
  • Referans20 S. Karthick, S. Shalini, S.S. Mani Prabu, K. Suhel, A. Vandan, C. Puneet, S. Manoj Kumar, R. Venkatesh, I.A. Palani, Influence of quaternary alloying addition on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy coated optical fiber, Measurement: Journal of the International Measurement Confederation. 153 (2020). https://doi.org/10.1016/j.measurement.2019.107379.
  • Referans21 Y. Motemani, P.J.S. Buenconsejo, A. Ludwig, Recent Developments in High-Temperature Shape Memory Thin Films, Shape Memory and Superelasticity. 1 (2015). https://doi.org/10.1007/s40830-015-0041-0.
  • Referans22 Y.Q. Fu, J.K. Luo, W.M. Huang, A.J. Flewitt, W.I. Milne, Thin film shape memory alloys for optical sensing applications, Journal of Physics: Conference Series. 76 (2007). https://doi.org/10.1088/1742-6596/76/1/012032.
  • Referans23 C.A. Canbay, A. Tataroğlu, W.A. Farooq, A. Dere, A. Karabulut, M. Atif, A. Hanif, CuAlMnV shape memory alloy thin film based photosensitive diode, Materials Science in Semiconductor Processing. 107 (2020) 104858. https://doi.org/10.1016/J.MSSP.2019.104858.
  • Referans24 A. Isalgue, V. Torra, J.-L. Seguin, M. Bendahan, J.M. Amigo, V. Esteve-Cano, Shape memory NiTi thin films deposited at low temperature, Materials Science and Engineering A. 273–275 (1999) 717–721. https://doi.org/10.1016/S0921-5093(99)00403-7.
  • Referans25 J.A. Walker, K.J. Gabriel, M. Mehregany, Thin-film processing of TiNi shape memory alloy, Sensors and Actuators A: Physical. 21 (1990). https://doi.org/10.1016/0924-4247(90)85047-8.
  • Referans26 M. Bendahan, J.L. Seguin, D. Lollman, H. Carchano, New type of Schottky barriers using NiTi shape memory alloy films, Thin Solid Films. 294 (1997) 278–280. https://doi.org/10.1016/S0040-6090(96)09230-9.
  • Referans27 M. Geetha, K. Dhanalakshmi, S. Jayachandran, I.A. Palani, V. Sathish Kumar, Analysis of actuation characteristics of CuAlNiMn/Polyimide thin film shape memory alloy, Materials Today: Proceedings. 46 (2021) 9580–9585. https://doi.org/10.1016/j.matpr.2020.04.689.
  • Referans28 C.A. Canbay, O. Karaduman, The photo response properties of shape memory alloy thin film based photodiode, Journal of Molecular Structure. 1235 (2021) 130263. https://doi.org/10.1016/j.molstruc.2021.130263.
  • Referans29 Q. Pan, C. Cho, The Investigation of a Shape Memory Alloy Micro-Damper for MEMS Applications, Sensors. 7 (2007). https://doi.org/10.3390/s7091887.
  • Referans30 M. Kabla, E. Ben-David, D. Shilo, A novel shape memory alloy microactuator for large in-plane strokes and forces, Smart Materials and Structures. 25 (2016). https://doi.org/10.1088/0964-1726/25/7/075020.
  • Referans31 K.R.C. Gisser, J.D. Busch, A.D. Johnson, A.B. Ellis, Oriented nickel-titanium shape memory alloy films prepared by annealing during deposition, Applied Physics Letters. 61 (1992) 1632–1634. https://doi.org/10.1063/1.108434.
  • Referans32 A.P. Jardine, H. Zhang, L.D. Wasielesky, Investigations into the thin-film fabrication of intermetallic NiTi, Mat. Res. Soc. Symp. Proc. 187 (1990) 181–186. https://doi.org/10.1557/PROC-187-181.
  • Referans33 C.A. Canbay, A. Tataroglu, A. Dere, A. Al-Ghamdi, F. Yakuphanoglu, A new shape memory alloy film/p-Si solar light four quadrant detector for solar tracking applications, Journal of Alloys and Compounds. 688 (2016) 762–768. https://doi.org/10.1016/J.JALLCOM.2016.07.087.
  • Referans34 C. Aksu Canbay, A. Dere, K. Mensah-Darkwa, A. Al-Ghamdi, Z. Karagoz Genç, R.K. Gupta, F. Yakuphanoglu, New type of Schottky diode-based Cu–Al–Mn–Cr shape memory material films, Applied Physics A: Materials Science and Processing. 122 (2016). https://doi.org/10.1007/s00339-016-0208-3.
  • Referans35 C.A. Canbay, A. Tataroğlu, A. Dere, A.G. Al-Sehemi, A. Karabulut, A.A. Al-Ghamdi, F. Yakuphanoglu, Electrical, kinetic and photoelectrical properties of CuAlMnMg shape memory alloy/n-Si Schottky diode, Journal of Alloys and Compounds. 888 (2021) 161600. https://doi.org/10.1016/J.JALLCOM.2021.161600.
  • Referans36 C. Aksu Canbay, A. Dere, K. Mensah-Darkwa, A. Al-Ghamdi, Z. Karagoz Genç, R.K. Gupta, F. Yakuphanoglu, New type of Schottky diode-based Cu–Al–Mn–Cr shape memory material films, Applied Physics A: Materials Science and Processing. 122 (2016). https://doi.org/10.1007/s00339-016-0208-3.
  • Referans37 O. Karaduman, İ. Özkul, C.A. Canbay, Shape memory effect characterization of a ternary CuAlNi high temperature SMA ribbons produced by melt spinning method, Advanced Engineering Science. 1 (2021) 26–33. http://publish.mersin.edu.tr/index.php/ades.
  • Referans38 C.A. Canbay, O. Karaduman, N. Ünlü, İ. Özkul, M.A. Çiçek, Energetic Behavior Study in Phase Transformations of High Temperature Cu–Al–X (X: Mn, Te, Sn, Hf) Shape Memory Alloys, Transactions of the Indian Institute of Metals. (2021). https://doi.org/10.1007/S12666-021-02241-6.
  • Referans39 E. Aldirmaz, M. Guler, E. Guler, A. Dere, A. Tataroğlu, A.G. Al-Sehemi, A.A. Al-Ghamdi, F. Yakuphanoglu, A shape memory alloy based on photodiode for optoelectronic applications, Journal of Alloys and Compounds. 743 (2018) 227–233. https://doi.org/10.1016/J.JALLCOM.2018.01.380.
  • Referans40 P. Cova, A. Singh, A. Medina, R.A. Masut, Effect of doping on the forward current-transport mechanisms in a metal–insulator–semiconductor contact to InP:Zn grown by metal organic vapor phase epitaxy, Solid-State Electronics. 42 (1998) 477–485. https://doi.org/10.1016/S0038-1101(97)00250-5.
  • Referans41 S.M. Sze, K.N. Kwok, Physics of Semiconductor Devices, 3rd ed., John Wiley Sons Inc., Hoboken, New Jersey, 2006.
  • Referans42 A. Tataroǧlu, F.Z. Pür, The Richardson constant and barrier inhomogeneity at Au/Si 3N4/n-Si (MIS) Schottky diodes, Physica Scripta. 88 (2013). https://doi.org/10.1088/0031-8949/88/01/015801.
  • Referans43 S. Riazimehr, S. Kataria, J.M. Gonzalez-Medina, S. Wagner, M. Shaygan, S. Suckow, F.G. Ruiz, O. Engström, A. Godoy, M.C. Lemme, High Responsivity and Quantum Efficiency of Graphene/Silicon Photodiodes Achieved by Interdigitating Schottky and Gated Regions, ACS Photonics. 6 (2019) 107–115. https://doi.org/10.1021/acsphotonics.8b00951.
  • Referans44 V. Balasubramani, J. Chandrasekaran, T.D. Nguyen, S. Maruthamuthu, R. Marnadu, P. Vivek, S. Sugarthi, Colossal photosensitive boost in Schottky diode behaviour with Ce-V2O5 interfaced layer of MIS structure, Sensors and Actuators, A: Physical. 315 (2020). https://doi.org/10.1016/j.sna.2020.112333.
  • Referans45 S. Ruzgar, M. Caglar, Fabrication and characterization of solution processed Al/Sn:ZnO/p-Si photodiodes, Materials Science in Semiconductor Processing. 115 (2020) 105076. https://doi.org/10.1016/j.mssp.2020.105076.
  • Referans46 A.G. Imer, E. Kaya, A. Dere, A.G. Al-Sehemi, A.A. Al-Ghamdi, A. Karabulut, F. Yakuphanoglu, Illumination impact on the electrical characteristics of Au/Sunset Yellow/n-Si/Au hybrid Schottky diode, Journal of Materials Science: Materials in Electronics. 31 (2020) 14665–14673. https://doi.org/10.1007/s10854-020-04029-8.
  • Referans47 P. Vivek, J. Chandrasekaran, R. Marnadu, S. Maruthamuthu, Fabrication of Illumination-Dependent Cu/p-Si Schottky Barrier Diodes by Sandwiching MoO 3 Nanoplates as an Interfacial Layer via JNSP Technique, (n.d.). https://doi.org/10.1007/s11664-020-08137-3.
  • Referans48 V. Balasubramani, J. Chandrasekaran, V. Manikandan, T.K. Le, R. Marnadu, P. Vivek, Upgraded photosensitivity under the influence of Yb doped on V2O5 thin films as an interfacial layer in MIS type Schottky barrier diode as photodiode application, Journal of Solid State Chemistry. 301 (2021). https://doi.org/10.1016/j.jssc.2021.122289.
  • Referans49 U.Y. Won, B.H. Lee, Y.R. Kim, W.T. Kang, I. Lee, J.E. Kim, Y.H. Lee, W.J. Yu, Efficient photovoltaic effect in graphene/h-BN/silicon heterostructure self-powered photodetector, Nano Research. 14 (2021) 1967–1972. https://doi.org/10.1007/s12274-020-2866-x.
  • Referans50 F. Gul, A simplified method to determine carrier transport mechanisms of metal-oxide resistive random access memory (RRAM) devices, in: Materials Today: Proceedings, Elsevier Ltd, 2021: pp. 6976–6978. https://doi.org/10.1016/j.matpr.2021.03.274.
  • Referans51 Z. Çaldiran, M. Şinoforoʇlu, Ö. Metin, Ş. Aydoʇan, K. Meral, Space charge limited current mechanism (SCLC) in the graphene oxide-Fe3O4 nanocomposites/n-Si heterojunctions, Journal of Alloys and Compounds. 631 (2015) 261–265. https://doi.org/10.1016/j.jallcom.2015.01.117.
  • Referans52 F.C. Chiu, A review on conduction mechanisms in dielectric films, Advances in Materials Science and Engineering. 2014 (2014). https://doi.org/10.1155/2014/578168.
  • Referans53 C.A. Arredondo, G. Gordillo, Photoconductive and electrical transport properties of AgInSe2 thin films prepared by co-evaporation, Physica B: Condensed Matter. 405 (2010) 3694–3699. https://doi.org/10.1016/j.physb.2010.05.068.
  • Referans54 N. Shiwakoti, A. Bobby, K. Asokan, B. Antony, Temperature dependent dielectric studies of Ni/n-GaP Schottky diodes by capacitance and conductance measurements, Materials Science in Semiconductor Processing. 42 (2016) 378–382. https://doi.org/10.1016/j.mssp.2015.11.010.
There are 52 citations in total.

Details

Primary Language English
Journal Section TJST
Authors

Oktay Karaduman 0000-0002-6947-7590

Canan Aksu Canbay 0000-0002-5151-4576

Publication Date September 30, 2022
Submission Date April 26, 2022
Published in Issue Year 2022 Volume: 17 Issue: 2

Cite

APA Karaduman, O., & Aksu Canbay, C. (2022). Photo-electrical Characterization of New CuAlNi/n-Si/Al Schottky Photodiode Fabricated by Coating Thin-Film Smart Material. Turkish Journal of Science and Technology, 17(2), 329-341. https://doi.org/10.55525/tjst.1108761
AMA Karaduman O, Aksu Canbay C. Photo-electrical Characterization of New CuAlNi/n-Si/Al Schottky Photodiode Fabricated by Coating Thin-Film Smart Material. TJST. September 2022;17(2):329-341. doi:10.55525/tjst.1108761
Chicago Karaduman, Oktay, and Canan Aksu Canbay. “Photo-Electrical Characterization of New CuAlNi/N-Si/Al Schottky Photodiode Fabricated by Coating Thin-Film Smart Material”. Turkish Journal of Science and Technology 17, no. 2 (September 2022): 329-41. https://doi.org/10.55525/tjst.1108761.
EndNote Karaduman O, Aksu Canbay C (September 1, 2022) Photo-electrical Characterization of New CuAlNi/n-Si/Al Schottky Photodiode Fabricated by Coating Thin-Film Smart Material. Turkish Journal of Science and Technology 17 2 329–341.
IEEE O. Karaduman and C. Aksu Canbay, “Photo-electrical Characterization of New CuAlNi/n-Si/Al Schottky Photodiode Fabricated by Coating Thin-Film Smart Material”, TJST, vol. 17, no. 2, pp. 329–341, 2022, doi: 10.55525/tjst.1108761.
ISNAD Karaduman, Oktay - Aksu Canbay, Canan. “Photo-Electrical Characterization of New CuAlNi/N-Si/Al Schottky Photodiode Fabricated by Coating Thin-Film Smart Material”. Turkish Journal of Science and Technology 17/2 (September 2022), 329-341. https://doi.org/10.55525/tjst.1108761.
JAMA Karaduman O, Aksu Canbay C. Photo-electrical Characterization of New CuAlNi/n-Si/Al Schottky Photodiode Fabricated by Coating Thin-Film Smart Material. TJST. 2022;17:329–341.
MLA Karaduman, Oktay and Canan Aksu Canbay. “Photo-Electrical Characterization of New CuAlNi/N-Si/Al Schottky Photodiode Fabricated by Coating Thin-Film Smart Material”. Turkish Journal of Science and Technology, vol. 17, no. 2, 2022, pp. 329-41, doi:10.55525/tjst.1108761.
Vancouver Karaduman O, Aksu Canbay C. Photo-electrical Characterization of New CuAlNi/n-Si/Al Schottky Photodiode Fabricated by Coating Thin-Film Smart Material. TJST. 2022;17(2):329-41.