Research Article
BibTex RIS Cite
Year 2023, Volume: 18 Issue: 1, 45 - 57, 29.03.2023
https://doi.org/10.55525/tjst.1170464

Abstract

References

  • Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys–a review. Acta Biomater 2012; 8(7): 2442-2455.
  • Manivasagam G, Dhinasekaran D, Rajamanickam A. Biomedical implants: corrosion and its prevention-a review. Recent Patents on Corrosion Science 2010; 2(1): 40-54.
  • Jamesh MI, Wu G, Zhao Y, McKenzie DR, Bilek MM, Chu PK. Electrochemical corrosion behavior of biodegradable Mg–Y–RE and Mg–Zn–Zr alloys in Ringer’s solution and simulated body fluid. J Corros Sci Eng 2015; 91: 160-184.
  • Razavi M., Fathi M. H., Meratian M. Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications. Mater Sci Eng A 2010; 527(26): 6938-6944.
  • Hiromoto S, Tomozawa M, Maruyama N. Fatigue property of a bioabsorbable magnesium alloy with a hydroxyapatite coating formed by a chemical solution deposition. J Mech Behav Biomed Mater 2013; 25; 1-10.
  • Rončević IŠ, Grubač Z, Metikoš-Huković M. Electrodeposition of hydroxyapatite coating on AZ91D alloy for biodegradable implant application. Int J Electrochem Sci 2014; 9: 5907-5923.
  • Hu J, Wang C, Ren WC, Zhang S, Liu F. Microstructure evolution and corrosion mechanism of dicalcium phosphate dihydrate coating on magnesium alloy in simulated body fluid. Mater Chem Phys 2010; 119(1-2): 294-298.
  • Wang H, Guan S, Wang Y, Liu H, Wang H, Wang L, Reb C, Zhu S, Chen K. In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg–Zn–Ca alloy for bone implant application. Colloids Surf B 2011; 88(1): 254-259.
  • Wang MJ, Chao SC, Yen SK. Electrolytic calcium phosphate/zirconia composite coating on AZ91D magnesium alloy for enhancing corrosion resistance and bioactivity. J Corros Sci Eng 2016; 104: 47-60.
  • Xiong Y, Lu C, Wang C, Song R. Degradation behavior of n-MAO/EPD bio-ceramic composite coatings on magnesium alloy in simulated body fluid. J Alloys Compd 2015; 625: 258-265.
  • Fintová S, Kunz L. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation. J Mech Behav Biomed Mater 2015; 42: 219-228.
  • Wang HX, Guan SK, Wang X, Ren CX, Wang LG. In vitro degradation and mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater 2010; 6(5): 1743-1748.
  • Gopi D, Murugan N, Ramya S, Kavitha L. Electrodeposition of a porous strontium-substituted hydroxyapatite/zinc oxide duplex layer on AZ91 magnesium alloy for orthopedic applications. J Mater Chem B 2014; 2(34): 5531-5540.
  • Li N, Zheng Y. Novel magnesium alloys developed for biomedical application: a review. J Mater Sci Technol 2013; 29(6): 489-502.
  • Liu GY, Tang SW, Chuan W, Jin HU, Li DC. Formation characteristic of Ca–P coatings on magnesium alloy surface. Trans Nonferrous Met Soc Chin 2013; 23(8): 2294-2299.
  • Liu GY, Hu J, Ding ZK, Wang C. Formation mechanism of calcium phosphate coating on micro-arc oxidized magnesium. Mater Chem Phys 2011; 130(3): 1118-24.
  • Zhang Y, Wei M. Controlling the biodegradation rate of magnesium using sol-gel and apatite coatings. Int J Mod Phys B 2009; 23(06n07):1897-1903.
  • Gray J, Luan B. Protective coatings on magnesium and its alloys - a critical review. J Alloys Compd 2002; 336(1-2): 88-113.
  • Ratner BD, Hoffman A.S, Schoen FJ, Lemons JE. Biomaterials science: an introduction to materials in medicine. San Diego, California 2004; 162-4.
  • Kamachimudali U, Sridhar TM, Raj B. Corrosion of bio implants. Sadhana 2003; 28(3): 601-637.
  • Gerengi H, Kaya E, Cabrini M. Magnezyumun (% 99.95) Biyobozunur Malzeme Olarak Kullanilma Potansiyeli. İleri Teknoloji Bilimleri Dergisi 2017; 6(2): 1-17.
  • Agarwal S, Curtin J, Duffy B, Jaiswal S. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Mater Sci Eng C 2016; 68: 948-963.
  • Atrens A, Liu M, Abidin NIZ. Corrosion mechanism applicable to biodegradable magnesium implants. Mat Sci Eng B 2011; 176(20): 1609-36.
  • Arnould C, Denayer J, Planckaert M, Delhalle J, Mekhalif Z. Bilayers coating on titanium surface: the impact on the hydroxyapatite initiation. J Colloid Interface Sci 2010; 341(1): 75-82.
  • Chang YY, Huang HL, Chen HJ, Lai CH, Wen CY. Antibacterial properties and cytocompatibility of tantalum oxide coatings. Surf Coat Technol 2014; 259: 193-198.
  • Hiromoto S, Inoue M, Taguchi T, Yamane M, Ohtsu N. In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite. Acta Biomater 2015; 11: 520-530.
  • Surmeneva MA, Tyurin AI, Mukhametkaliyev TM, Pirozhkova TS, Shuvarin IA, Syrtanov MS, Surmenev RA. Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering. J Mech Behav Biomed Mater 2015; 46: 127-136.
  • Hiromoto S, Tomozawa M. Hydroxyapatite coating of AZ31 magnesium alloy by a solution treatment and its corrosion behavior in NaCl solution. Surf Coat Technol 2011; 205(19): 4711-19.
  • Kiahosseini SR, Afshar A, Larijani MM, Yousefpour M. Structural and corrosion characterization of hydroxyapatite/zirconium nitride-coated AZ91 magnesium alloy by ion beam sputtering. Appl Surf Sci Adv 2017; 401: 172-180.
  • Pang X, Zhitomirsky I. Electrodeposition of hydroxyapatite–silver–chitosan nanocomposite coatings. Surf Coat Technol 2008; 202(16): 3815-21.
  • Tomozawa M, Hiromoto S, Harada Y. Microstructure of hydroxyapatite-coated magnesium prepared in aqueous solution. Surf Coat Technol 2010; 204(20): 3243-47.
  • Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R 2015;, 87: 1-57.
  • Bakhsheshi-Rad HR, Hamzah E, Ismail AF, Sharer Z, Abdul-Kadir MR, Daroonparvar M, Saud SN, Medraj, M. Synthesis and corrosion behavior of a hybrid bioceramic-biopolymer coating on biodegradable Mg alloy for orthopaedic implants. J Alloys Compd 2015; 648: 1067-71.
  • Rajendran A, Barik RC, Natarajan D, Kiran MS, Pattanayak DK. Synthesis, phase stability of hydroxyapatite–silver composite with antimicrobial activity and cytocompatability. Ceram Int 2014; 40(7): 10831-38.
  • Tan L, Yu X, Wan P, Yang K. Biodegradable Materials for Bone Repairs: A Review. J Mater Sci Technol 2013; 29: 503–513.
  • Barranco V, Carmona N, Galván JC, Grobelny M, Kwiatkowski L, Villegas MA. Electrochemical study of tailored sol–gel thin films as pre-treatment prior to organic coating for AZ91 magnesium alloy. Prog Org Coat 2010; 68(4): 347-355.
  • Gu XN, Li N, Zhou WR, Zheng YF, Zhao X, Cai QZ, Ruan L. Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg–Ca alloy. Acta Biomater 2011; 7(4): 1880-1889.
  • Kannan MB. Electrochemical deposition of calcium phosphates on magnesium and its alloys for improved biodegradation performance: A review. Surf Coat Technol 2016; 301: 36-41.
  • Liu GY, Hu J, Ding ZK, Wang C. Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition. App Surf Sci 2011; 257(6): 2051-57.
  • Ma J, Thompson M, Zhao N, Zhu D. Similarities and differences in coatings for magnesium-based stents and orthopaedic implants. J Orthop Transl 2014; 2(3): 118-130.
  • Wang D, Bierwagen GP. Sol–gel coatings on metals for corrosion protection. Prog Org Coat 2009; 64(4): 327-338.
  • Yoshida K, Tanagawa M, Kamada K, Hatada R, Baba K, Inoi T, Atsuta M. Silica coatings formed on noble dental casting alloy by the sol‐gel dipping process. J Biomed Mater 1999; 46(2): 221-227.
  • Bakhsheshi‐Rad HR, Hamzah E, Shuang CP, Berto F. Preparation of poly (ε‐caprolactone)‐hydroxyapatite composite coating for improvement of corrosion performance of biodegradable magnesium. Mater Des Process Commun 2020; 2(4): 170
  • Gozuacik NK, Altay M, Baydogan M. Micro Arc Oxidation of AZ91 Magnesium Alloy–Effect of Organic Compounds in the Electrolyte. In Defect and Diffusion Forum Trans Tech Pub Ltd. 2014; 353: 217-222.
  • Wang L, Zhang BP, Shinohara T. Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions. Mater Des 2010; 31(2): 857-863.
  • Perez N. Electrochemistry and corrosion science. Boston, MA: Springer Us. 2004.
  • Wang H, Lee JK, Moursi A, Lannutti JJ. Ca/P ratio effects on the degradation of hydroxyapatite in vitro. J Biomed Mater Res Part A 2003; 67(2): 599-608.
  • Pe PAS. Fundamentals of corrosion: Mechanisms, causes, and preventative methods. CRC Press, 2009.
  • Song GL. Corrosion of magnesium alloys. Elsevier, 2011.
  • Tahmasebifar A, Kayhan SM, Evis Z, Tezcaner A, Çinici H, Koc M. Mechanical, electrochemical and biocompatibility evaluation of AZ91D magnesium alloy as a biomaterial. J Alloys Compd 2016; 687: 906-919.
  • Callister WD, Rethwisch DG. Materialwissenschaften und Werkstofftechnik: Eine Einführung. John Wiley & Sons, 2012.
  • El Abedin SZ, Welz-Biermann U, Endres F. A study on the electrodeposition of tantalum on NiTi alloy in an ionic liquid and corrosion behaviour of the coated alloy. Electrochem Commun 2005; 7(9): 941-946.
  • Erinc M, Sillekens WH, Mannens RGTM, Werkhoven RJ. Applicability of existing magnesium alloys as biomedical implant materials. TNO Industrie en Techniek, 2009.

The Effects of Hydroxyapatite on the Corrosion Behaviour of AZ Series Mg Alloys

Year 2023, Volume: 18 Issue: 1, 45 - 57, 29.03.2023
https://doi.org/10.55525/tjst.1170464

Abstract

Metallic biomaterials are widely used in the orthopedic and dental applications owing to their advanced biocompatibility and sophisticated mechanical properties. Many studies are carried out to develop new alloys with high specific strength, high corrosion resistance and high biocompatibility as an alternative to present metallic biomaterials. Mg alloys are potential alloys as a biomaterial, especially because they have low density and high biocompatibility. However, especially the corrosion properties of Mg alloys need to be improved. In this study, the surfaces of AZ31, AZ61 and AZ91 alloys, which are promising as biomaterials, were coated with hydroxyapatite with high biocompatibility, and the effects of the bioceramics coatings on corrosion resistance were comprehensively investigated. Crack-free and porous surface morphologies were obtained in all bioceramic coatings and the presence of the coatings on the surfaces was supported by EDS analysis. As a result of the corrosion tests performed in SBF, it was determined that the AZ91 alloy had the highest corrosion resistance among the uncoated samples. The hydroxyapatite bioceramic coatings also improved the corrosion properties of all samples. However, among all samples, the highest corrosion resistance was obtained in the hydroxyapatite coated AZ91 alloy.

References

  • Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys–a review. Acta Biomater 2012; 8(7): 2442-2455.
  • Manivasagam G, Dhinasekaran D, Rajamanickam A. Biomedical implants: corrosion and its prevention-a review. Recent Patents on Corrosion Science 2010; 2(1): 40-54.
  • Jamesh MI, Wu G, Zhao Y, McKenzie DR, Bilek MM, Chu PK. Electrochemical corrosion behavior of biodegradable Mg–Y–RE and Mg–Zn–Zr alloys in Ringer’s solution and simulated body fluid. J Corros Sci Eng 2015; 91: 160-184.
  • Razavi M., Fathi M. H., Meratian M. Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications. Mater Sci Eng A 2010; 527(26): 6938-6944.
  • Hiromoto S, Tomozawa M, Maruyama N. Fatigue property of a bioabsorbable magnesium alloy with a hydroxyapatite coating formed by a chemical solution deposition. J Mech Behav Biomed Mater 2013; 25; 1-10.
  • Rončević IŠ, Grubač Z, Metikoš-Huković M. Electrodeposition of hydroxyapatite coating on AZ91D alloy for biodegradable implant application. Int J Electrochem Sci 2014; 9: 5907-5923.
  • Hu J, Wang C, Ren WC, Zhang S, Liu F. Microstructure evolution and corrosion mechanism of dicalcium phosphate dihydrate coating on magnesium alloy in simulated body fluid. Mater Chem Phys 2010; 119(1-2): 294-298.
  • Wang H, Guan S, Wang Y, Liu H, Wang H, Wang L, Reb C, Zhu S, Chen K. In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg–Zn–Ca alloy for bone implant application. Colloids Surf B 2011; 88(1): 254-259.
  • Wang MJ, Chao SC, Yen SK. Electrolytic calcium phosphate/zirconia composite coating on AZ91D magnesium alloy for enhancing corrosion resistance and bioactivity. J Corros Sci Eng 2016; 104: 47-60.
  • Xiong Y, Lu C, Wang C, Song R. Degradation behavior of n-MAO/EPD bio-ceramic composite coatings on magnesium alloy in simulated body fluid. J Alloys Compd 2015; 625: 258-265.
  • Fintová S, Kunz L. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation. J Mech Behav Biomed Mater 2015; 42: 219-228.
  • Wang HX, Guan SK, Wang X, Ren CX, Wang LG. In vitro degradation and mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater 2010; 6(5): 1743-1748.
  • Gopi D, Murugan N, Ramya S, Kavitha L. Electrodeposition of a porous strontium-substituted hydroxyapatite/zinc oxide duplex layer on AZ91 magnesium alloy for orthopedic applications. J Mater Chem B 2014; 2(34): 5531-5540.
  • Li N, Zheng Y. Novel magnesium alloys developed for biomedical application: a review. J Mater Sci Technol 2013; 29(6): 489-502.
  • Liu GY, Tang SW, Chuan W, Jin HU, Li DC. Formation characteristic of Ca–P coatings on magnesium alloy surface. Trans Nonferrous Met Soc Chin 2013; 23(8): 2294-2299.
  • Liu GY, Hu J, Ding ZK, Wang C. Formation mechanism of calcium phosphate coating on micro-arc oxidized magnesium. Mater Chem Phys 2011; 130(3): 1118-24.
  • Zhang Y, Wei M. Controlling the biodegradation rate of magnesium using sol-gel and apatite coatings. Int J Mod Phys B 2009; 23(06n07):1897-1903.
  • Gray J, Luan B. Protective coatings on magnesium and its alloys - a critical review. J Alloys Compd 2002; 336(1-2): 88-113.
  • Ratner BD, Hoffman A.S, Schoen FJ, Lemons JE. Biomaterials science: an introduction to materials in medicine. San Diego, California 2004; 162-4.
  • Kamachimudali U, Sridhar TM, Raj B. Corrosion of bio implants. Sadhana 2003; 28(3): 601-637.
  • Gerengi H, Kaya E, Cabrini M. Magnezyumun (% 99.95) Biyobozunur Malzeme Olarak Kullanilma Potansiyeli. İleri Teknoloji Bilimleri Dergisi 2017; 6(2): 1-17.
  • Agarwal S, Curtin J, Duffy B, Jaiswal S. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Mater Sci Eng C 2016; 68: 948-963.
  • Atrens A, Liu M, Abidin NIZ. Corrosion mechanism applicable to biodegradable magnesium implants. Mat Sci Eng B 2011; 176(20): 1609-36.
  • Arnould C, Denayer J, Planckaert M, Delhalle J, Mekhalif Z. Bilayers coating on titanium surface: the impact on the hydroxyapatite initiation. J Colloid Interface Sci 2010; 341(1): 75-82.
  • Chang YY, Huang HL, Chen HJ, Lai CH, Wen CY. Antibacterial properties and cytocompatibility of tantalum oxide coatings. Surf Coat Technol 2014; 259: 193-198.
  • Hiromoto S, Inoue M, Taguchi T, Yamane M, Ohtsu N. In vitro and in vivo biocompatibility and corrosion behaviour of a bioabsorbable magnesium alloy coated with octacalcium phosphate and hydroxyapatite. Acta Biomater 2015; 11: 520-530.
  • Surmeneva MA, Tyurin AI, Mukhametkaliyev TM, Pirozhkova TS, Shuvarin IA, Syrtanov MS, Surmenev RA. Enhancement of the mechanical properties of AZ31 magnesium alloy via nanostructured hydroxyapatite thin films fabricated via radio-frequency magnetron sputtering. J Mech Behav Biomed Mater 2015; 46: 127-136.
  • Hiromoto S, Tomozawa M. Hydroxyapatite coating of AZ31 magnesium alloy by a solution treatment and its corrosion behavior in NaCl solution. Surf Coat Technol 2011; 205(19): 4711-19.
  • Kiahosseini SR, Afshar A, Larijani MM, Yousefpour M. Structural and corrosion characterization of hydroxyapatite/zirconium nitride-coated AZ91 magnesium alloy by ion beam sputtering. Appl Surf Sci Adv 2017; 401: 172-180.
  • Pang X, Zhitomirsky I. Electrodeposition of hydroxyapatite–silver–chitosan nanocomposite coatings. Surf Coat Technol 2008; 202(16): 3815-21.
  • Tomozawa M, Hiromoto S, Harada Y. Microstructure of hydroxyapatite-coated magnesium prepared in aqueous solution. Surf Coat Technol 2010; 204(20): 3243-47.
  • Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R 2015;, 87: 1-57.
  • Bakhsheshi-Rad HR, Hamzah E, Ismail AF, Sharer Z, Abdul-Kadir MR, Daroonparvar M, Saud SN, Medraj, M. Synthesis and corrosion behavior of a hybrid bioceramic-biopolymer coating on biodegradable Mg alloy for orthopaedic implants. J Alloys Compd 2015; 648: 1067-71.
  • Rajendran A, Barik RC, Natarajan D, Kiran MS, Pattanayak DK. Synthesis, phase stability of hydroxyapatite–silver composite with antimicrobial activity and cytocompatability. Ceram Int 2014; 40(7): 10831-38.
  • Tan L, Yu X, Wan P, Yang K. Biodegradable Materials for Bone Repairs: A Review. J Mater Sci Technol 2013; 29: 503–513.
  • Barranco V, Carmona N, Galván JC, Grobelny M, Kwiatkowski L, Villegas MA. Electrochemical study of tailored sol–gel thin films as pre-treatment prior to organic coating for AZ91 magnesium alloy. Prog Org Coat 2010; 68(4): 347-355.
  • Gu XN, Li N, Zhou WR, Zheng YF, Zhao X, Cai QZ, Ruan L. Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg–Ca alloy. Acta Biomater 2011; 7(4): 1880-1889.
  • Kannan MB. Electrochemical deposition of calcium phosphates on magnesium and its alloys for improved biodegradation performance: A review. Surf Coat Technol 2016; 301: 36-41.
  • Liu GY, Hu J, Ding ZK, Wang C. Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition. App Surf Sci 2011; 257(6): 2051-57.
  • Ma J, Thompson M, Zhao N, Zhu D. Similarities and differences in coatings for magnesium-based stents and orthopaedic implants. J Orthop Transl 2014; 2(3): 118-130.
  • Wang D, Bierwagen GP. Sol–gel coatings on metals for corrosion protection. Prog Org Coat 2009; 64(4): 327-338.
  • Yoshida K, Tanagawa M, Kamada K, Hatada R, Baba K, Inoi T, Atsuta M. Silica coatings formed on noble dental casting alloy by the sol‐gel dipping process. J Biomed Mater 1999; 46(2): 221-227.
  • Bakhsheshi‐Rad HR, Hamzah E, Shuang CP, Berto F. Preparation of poly (ε‐caprolactone)‐hydroxyapatite composite coating for improvement of corrosion performance of biodegradable magnesium. Mater Des Process Commun 2020; 2(4): 170
  • Gozuacik NK, Altay M, Baydogan M. Micro Arc Oxidation of AZ91 Magnesium Alloy–Effect of Organic Compounds in the Electrolyte. In Defect and Diffusion Forum Trans Tech Pub Ltd. 2014; 353: 217-222.
  • Wang L, Zhang BP, Shinohara T. Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions. Mater Des 2010; 31(2): 857-863.
  • Perez N. Electrochemistry and corrosion science. Boston, MA: Springer Us. 2004.
  • Wang H, Lee JK, Moursi A, Lannutti JJ. Ca/P ratio effects on the degradation of hydroxyapatite in vitro. J Biomed Mater Res Part A 2003; 67(2): 599-608.
  • Pe PAS. Fundamentals of corrosion: Mechanisms, causes, and preventative methods. CRC Press, 2009.
  • Song GL. Corrosion of magnesium alloys. Elsevier, 2011.
  • Tahmasebifar A, Kayhan SM, Evis Z, Tezcaner A, Çinici H, Koc M. Mechanical, electrochemical and biocompatibility evaluation of AZ91D magnesium alloy as a biomaterial. J Alloys Compd 2016; 687: 906-919.
  • Callister WD, Rethwisch DG. Materialwissenschaften und Werkstofftechnik: Eine Einführung. John Wiley & Sons, 2012.
  • El Abedin SZ, Welz-Biermann U, Endres F. A study on the electrodeposition of tantalum on NiTi alloy in an ionic liquid and corrosion behaviour of the coated alloy. Electrochem Commun 2005; 7(9): 941-946.
  • Erinc M, Sillekens WH, Mannens RGTM, Werkhoven RJ. Applicability of existing magnesium alloys as biomedical implant materials. TNO Industrie en Techniek, 2009.
There are 53 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section TJST
Authors

Yakup Say 0000-0001-5005-8516

Publication Date March 29, 2023
Submission Date September 3, 2022
Published in Issue Year 2023 Volume: 18 Issue: 1

Cite

APA Say, Y. (2023). The Effects of Hydroxyapatite on the Corrosion Behaviour of AZ Series Mg Alloys. Turkish Journal of Science and Technology, 18(1), 45-57. https://doi.org/10.55525/tjst.1170464
AMA Say Y. The Effects of Hydroxyapatite on the Corrosion Behaviour of AZ Series Mg Alloys. TJST. March 2023;18(1):45-57. doi:10.55525/tjst.1170464
Chicago Say, Yakup. “The Effects of Hydroxyapatite on the Corrosion Behaviour of AZ Series Mg Alloys”. Turkish Journal of Science and Technology 18, no. 1 (March 2023): 45-57. https://doi.org/10.55525/tjst.1170464.
EndNote Say Y (March 1, 2023) The Effects of Hydroxyapatite on the Corrosion Behaviour of AZ Series Mg Alloys. Turkish Journal of Science and Technology 18 1 45–57.
IEEE Y. Say, “The Effects of Hydroxyapatite on the Corrosion Behaviour of AZ Series Mg Alloys”, TJST, vol. 18, no. 1, pp. 45–57, 2023, doi: 10.55525/tjst.1170464.
ISNAD Say, Yakup. “The Effects of Hydroxyapatite on the Corrosion Behaviour of AZ Series Mg Alloys”. Turkish Journal of Science and Technology 18/1 (March 2023), 45-57. https://doi.org/10.55525/tjst.1170464.
JAMA Say Y. The Effects of Hydroxyapatite on the Corrosion Behaviour of AZ Series Mg Alloys. TJST. 2023;18:45–57.
MLA Say, Yakup. “The Effects of Hydroxyapatite on the Corrosion Behaviour of AZ Series Mg Alloys”. Turkish Journal of Science and Technology, vol. 18, no. 1, 2023, pp. 45-57, doi:10.55525/tjst.1170464.
Vancouver Say Y. The Effects of Hydroxyapatite on the Corrosion Behaviour of AZ Series Mg Alloys. TJST. 2023;18(1):45-57.