Research Article
BibTex RIS Cite
Year 2023, Volume: 18 Issue: 1, 131 - 138, 29.03.2023
https://doi.org/10.55525/tjst.1209085

Abstract

References

  • Pérez-Landazábal JI, Recarte V, Sánchez-Alarcos V, Gómez-Polo, C, Kustov S, Cesari E. Magnetic field induced martensitic transformation linked to the arrested austenite in a Ni-Mn-In-Co shape memory alloy. J Appl Phys 2011; 109(9), 093515-093521.
  • Han ZD, Wang DH, Zhang CL, Xuan HC, Zhang JR, Gu BX, Du YW. The phase transitions, magnetocaloric effect, and magnetoresistance in Co doped Ni-Mn-Sb ferromagnetic shape memory alloys. J Appl Phy 2008; 104(5), 053906-0539012.
  • Desroches R, Smith B. Shape memory alloys in seismic resistant design and retrofit: A critical review of their potential and limitations. J Earthq Eng 2004;. 8, 415–429.
  • Kirat G. Exchange Bias Effect in NiMnSbB Ferromagnetic Shape Memory Alloys Depending on Mn Content. Adyu J Scı 2021; 11, 444–455.
  • Karaca HE, Karaman I, Basaran B, Lagoudas DC, Chumlyakov YI, Maier HJ. On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys. Acta Mater 2007; 55, 4253–4269.
  • Karaca HE, Karaman I, Basaran B, Ren Y, Chumlyakov I, Maier HJ. Magnetic Field-Induced Phase Transformation in NiMnCoIn Magnetic Shape-Memory Alloys — A New Actuation Mechanism with Large Work Output. Adv Funct Mater 2009; 19, 983–998.
  • Zhang H, Zhang X, Qian M, Yao Z, Wei L, Geng L. Increasing working temperature span in Ni-Mn-Sn-Co alloys via introducing pores. J Magn Magn Mater 2000; 500, 166359-166362.
  • Zheng H, Wang W, Xue S, Zhai Q, Frenzel J, Luo Z. Composition-dependent crystal structure and martensitic transformation in Heusler Ni-Mn-Sn alloys, Acta Mater 2013; 61, 4648–4656.
  • Kirat G, Aksan MA. Influence of the Cu substitution on magnetic properties of Ni–Mn–Sn–B shape memory ribbons. Appl Phys A-Mater 2021; 127, 1–9.
  • Pons J, Chernenko VA. Santamarta R, Cesari E. Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys, Acta Mater 2000; 48, 3027–3038.
  • Deltell A, Escoda L, Saurina J, Suñol J. Martensitic Transformation in Ni-Mn-Sn-Co Heusler Alloys. Metals 2015; 5, 695–705.
  • Titov IS, Zhukov AP, Gonzalez J, Kazakov AP, Dubenko IS, Granovskii AB, Pathak AK, Perov NS, Prudnikov VN, Ali N. Hall effect in a martensitic transformation in Ni-Co-Mn-In Heusler alloys. JETP Lett 2011, 92, 666–670.
  • Guha S, Datta S, Panda SK, Kar M. Critical Behavior and Magnetocaloric Effect in Co2CrAl Heusler Alloy. Physica Status Solidi (B): Basic Res 2022; 259, 2100533-2100541.
  • Blinov M, Aryal A, Pandey S, Dubenko I, Talapatra S, Prudnikov V, Lähderanta E, Stadler S, Buchelnikov V, Sokolovskiy V, Zagrebin M, Granovsky A, Ali N. Effects of magnetic and structural phase transitions on the normal and anomalous Hall effects in Ni-Mn-In-B Heusler alloys. Phys Rev B 2020; 101, 94423-94429.
  • Pandey S, Blinov M, Aryal A, Dubenko I, Prudnikov V, Lähderanta E, Granovsky A, Kazachkova N, Stadler S, Ali N. Drastic violation of the basic correlation between the Hall effect and resistivity in the Heusler alloy Ni45Cr5Mn37In13, . J Magn Magn Mater 2019; 481, 25–28.
  • Sivaprakash P, Arumugam S, Esakki Muthu S, Raj Kumar DM, Saravanan C, Rama Rao NV, Uwatoko Y, Thiyagarajan R. Correlation of magnetocaloric effect through magnetic and electrical resistivity on Si doped Ni–Mn–In Heusler melt spun ribbon. Intermetal 2021; 137, 107285-107293.
  • Zhukov AP, Prudnikov VN, Dubenko IS, Granovskii AB, Kazakov AP. Determination of the normal and anomalous hall effect coefficients in ferromagnetic Ni50Mn35In15−xSix Heusler alloys at the martensitic transformation. J Exp Theor Phys+ 2012; 115, 805–814.
  • Prudnikov VN, Kazakov AP, Titov IS, Perov NS, Granovskii AB, Dubenko IS, Pathak AK, Ali N, Zhukov AP, Gonzalez J. Hall effect in a martensitic transformation in Ni-Co-Mn-In Heusler alloys. JETP Lett 2010; 92, 666–670.
  • Pasquale M, Sasso CP, Lewis LH, Giudici L, Lograsso T, Schlagel D, Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals. Phys Rev B 2005; 72, 1–5.
  • Singh S, Biswas C. Magnetoresistance origin in martensitic and austenitic phases of Ni2Mn1+xSn1-x, Appl Phys Lett 2021; 98, 212101-212104.
  • Biswas C, Rawat R, Barman SR. Large negative magnetoresistance in a ferromagnetic shape memory alloy: Ni2+xMn1-xGa. Appl Phys Lett 2005; 86, 1–3.
  • Xuan HC, Zheng YX, Ma SC, Cao QQ, Wang DH, Du YW. The martensitic transformation, magnetocaloric effect, and magnetoresistance in high-Mn content Mn47+xNi43-xSn10 ferromagnetic shape memory alloys. J Appl Phys 2010; 108, 1–5.
  • Kirat G, Kizilaslan O, Aksan MA. Magnetoresistance properties of magnetic Ni-Mn-Sn-B shape memory ribbons and magnetic field sensor aspects operating at room temperature. J Magn Magn Mater. 2019; 477, 366–371.
  • Kirat G, Aksan MA, Aydogdu Y. Magnetic field induced martensitic transition in Fe doped Ni-Mn-Sn-B shape memory ribbons. Intermetall 2019; 111, 106493-106503.
  • Sakon T, Sasaki K, Numakura D, Abe M, Nojiri H, Adachi Y, Kanomata T. Magnetic Field-Induced Transition in Co-Doped Ni41Co9Mn31.5Ga18.5 Heusler Alloy. Mater Trans 2013; 54, 9-13.
  • Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 2006; 439, 957–960.
  • Liu J, Scheerbaum N, Hinz D, Gutfleisch O. Magnetostructural transformation in Ni-Mn-In-Co ribbons. Appl Phys Lett 2008; 92, 35–38.
  • Chen Z, Cong D, Li S, Zhang Y, Li S, Cao Y, Li S, Song C, Ren Y, Wang Y. External‐field‐induced phase transformation and associated properties in a Ni50Mn34Fe3In13 metamagnetic shape memory wire. Metals 2021; 11, 1–14.
  • Brown PJ, Gandy AP, Ishida K, Kainuma R, Kanomata T, Neumann KU, Oikawa K, Ouladdiaf B, Ziebeck KRA. The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.44Sn0.56. J Phys-Condens Mat 2006; 18, 2249–2259.

Variation of Electrical Resistivity During Magnetic Field-Induced Martensitic Transformation in Vanadium added NiMnSnB alloys

Year 2023, Volume: 18 Issue: 1, 131 - 138, 29.03.2023
https://doi.org/10.55525/tjst.1209085

Abstract

In this study, the structural and electrical properties of Ni49-xVxMn37Sn12B2 (x = 0, 1, 2, and 3) ferromagnetic shape memory alloys were investigated. According to XRD analyzes at room temperature, the x=0 sample was in the martensite phase, the x=1 and 2 samples were in the mixture phase, and the x=3 sample was in the austenite phase. The resistivity analyses depend on temperature showed that all samples exhibited martensitic transformation and the phase transformation temperature decreased with V doping. Magnetoresistance (MR) values were calculated using ρ-T curves performed under 0 T and 1 T magnetic fields. The observed negative MR is consistent with Kataoka's s-d model. As-Af interval was determined and M-H measurements were made at constant temperatures determined in this interval. The results were attributed to the magnetic field-induced phase transformation (MFIPT). In order to examine the effects of MFIPT on the electrical resistivity, the resistivity depend on magnetic field was measured using the same thermal process. The overlapping of the curves in the high magnetic field revealed that the resistivity decreased due to the MFIPT as well as the MR.

References

  • Pérez-Landazábal JI, Recarte V, Sánchez-Alarcos V, Gómez-Polo, C, Kustov S, Cesari E. Magnetic field induced martensitic transformation linked to the arrested austenite in a Ni-Mn-In-Co shape memory alloy. J Appl Phys 2011; 109(9), 093515-093521.
  • Han ZD, Wang DH, Zhang CL, Xuan HC, Zhang JR, Gu BX, Du YW. The phase transitions, magnetocaloric effect, and magnetoresistance in Co doped Ni-Mn-Sb ferromagnetic shape memory alloys. J Appl Phy 2008; 104(5), 053906-0539012.
  • Desroches R, Smith B. Shape memory alloys in seismic resistant design and retrofit: A critical review of their potential and limitations. J Earthq Eng 2004;. 8, 415–429.
  • Kirat G. Exchange Bias Effect in NiMnSbB Ferromagnetic Shape Memory Alloys Depending on Mn Content. Adyu J Scı 2021; 11, 444–455.
  • Karaca HE, Karaman I, Basaran B, Lagoudas DC, Chumlyakov YI, Maier HJ. On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys. Acta Mater 2007; 55, 4253–4269.
  • Karaca HE, Karaman I, Basaran B, Ren Y, Chumlyakov I, Maier HJ. Magnetic Field-Induced Phase Transformation in NiMnCoIn Magnetic Shape-Memory Alloys — A New Actuation Mechanism with Large Work Output. Adv Funct Mater 2009; 19, 983–998.
  • Zhang H, Zhang X, Qian M, Yao Z, Wei L, Geng L. Increasing working temperature span in Ni-Mn-Sn-Co alloys via introducing pores. J Magn Magn Mater 2000; 500, 166359-166362.
  • Zheng H, Wang W, Xue S, Zhai Q, Frenzel J, Luo Z. Composition-dependent crystal structure and martensitic transformation in Heusler Ni-Mn-Sn alloys, Acta Mater 2013; 61, 4648–4656.
  • Kirat G, Aksan MA. Influence of the Cu substitution on magnetic properties of Ni–Mn–Sn–B shape memory ribbons. Appl Phys A-Mater 2021; 127, 1–9.
  • Pons J, Chernenko VA. Santamarta R, Cesari E. Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys, Acta Mater 2000; 48, 3027–3038.
  • Deltell A, Escoda L, Saurina J, Suñol J. Martensitic Transformation in Ni-Mn-Sn-Co Heusler Alloys. Metals 2015; 5, 695–705.
  • Titov IS, Zhukov AP, Gonzalez J, Kazakov AP, Dubenko IS, Granovskii AB, Pathak AK, Perov NS, Prudnikov VN, Ali N. Hall effect in a martensitic transformation in Ni-Co-Mn-In Heusler alloys. JETP Lett 2011, 92, 666–670.
  • Guha S, Datta S, Panda SK, Kar M. Critical Behavior and Magnetocaloric Effect in Co2CrAl Heusler Alloy. Physica Status Solidi (B): Basic Res 2022; 259, 2100533-2100541.
  • Blinov M, Aryal A, Pandey S, Dubenko I, Talapatra S, Prudnikov V, Lähderanta E, Stadler S, Buchelnikov V, Sokolovskiy V, Zagrebin M, Granovsky A, Ali N. Effects of magnetic and structural phase transitions on the normal and anomalous Hall effects in Ni-Mn-In-B Heusler alloys. Phys Rev B 2020; 101, 94423-94429.
  • Pandey S, Blinov M, Aryal A, Dubenko I, Prudnikov V, Lähderanta E, Granovsky A, Kazachkova N, Stadler S, Ali N. Drastic violation of the basic correlation between the Hall effect and resistivity in the Heusler alloy Ni45Cr5Mn37In13, . J Magn Magn Mater 2019; 481, 25–28.
  • Sivaprakash P, Arumugam S, Esakki Muthu S, Raj Kumar DM, Saravanan C, Rama Rao NV, Uwatoko Y, Thiyagarajan R. Correlation of magnetocaloric effect through magnetic and electrical resistivity on Si doped Ni–Mn–In Heusler melt spun ribbon. Intermetal 2021; 137, 107285-107293.
  • Zhukov AP, Prudnikov VN, Dubenko IS, Granovskii AB, Kazakov AP. Determination of the normal and anomalous hall effect coefficients in ferromagnetic Ni50Mn35In15−xSix Heusler alloys at the martensitic transformation. J Exp Theor Phys+ 2012; 115, 805–814.
  • Prudnikov VN, Kazakov AP, Titov IS, Perov NS, Granovskii AB, Dubenko IS, Pathak AK, Ali N, Zhukov AP, Gonzalez J. Hall effect in a martensitic transformation in Ni-Co-Mn-In Heusler alloys. JETP Lett 2010; 92, 666–670.
  • Pasquale M, Sasso CP, Lewis LH, Giudici L, Lograsso T, Schlagel D, Magnetostructural transition and magnetocaloric effect in Ni55Mn20Ga25 single crystals. Phys Rev B 2005; 72, 1–5.
  • Singh S, Biswas C. Magnetoresistance origin in martensitic and austenitic phases of Ni2Mn1+xSn1-x, Appl Phys Lett 2021; 98, 212101-212104.
  • Biswas C, Rawat R, Barman SR. Large negative magnetoresistance in a ferromagnetic shape memory alloy: Ni2+xMn1-xGa. Appl Phys Lett 2005; 86, 1–3.
  • Xuan HC, Zheng YX, Ma SC, Cao QQ, Wang DH, Du YW. The martensitic transformation, magnetocaloric effect, and magnetoresistance in high-Mn content Mn47+xNi43-xSn10 ferromagnetic shape memory alloys. J Appl Phys 2010; 108, 1–5.
  • Kirat G, Kizilaslan O, Aksan MA. Magnetoresistance properties of magnetic Ni-Mn-Sn-B shape memory ribbons and magnetic field sensor aspects operating at room temperature. J Magn Magn Mater. 2019; 477, 366–371.
  • Kirat G, Aksan MA, Aydogdu Y. Magnetic field induced martensitic transition in Fe doped Ni-Mn-Sn-B shape memory ribbons. Intermetall 2019; 111, 106493-106503.
  • Sakon T, Sasaki K, Numakura D, Abe M, Nojiri H, Adachi Y, Kanomata T. Magnetic Field-Induced Transition in Co-Doped Ni41Co9Mn31.5Ga18.5 Heusler Alloy. Mater Trans 2013; 54, 9-13.
  • Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 2006; 439, 957–960.
  • Liu J, Scheerbaum N, Hinz D, Gutfleisch O. Magnetostructural transformation in Ni-Mn-In-Co ribbons. Appl Phys Lett 2008; 92, 35–38.
  • Chen Z, Cong D, Li S, Zhang Y, Li S, Cao Y, Li S, Song C, Ren Y, Wang Y. External‐field‐induced phase transformation and associated properties in a Ni50Mn34Fe3In13 metamagnetic shape memory wire. Metals 2021; 11, 1–14.
  • Brown PJ, Gandy AP, Ishida K, Kainuma R, Kanomata T, Neumann KU, Oikawa K, Ouladdiaf B, Ziebeck KRA. The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.44Sn0.56. J Phys-Condens Mat 2006; 18, 2249–2259.
There are 29 citations in total.

Details

Primary Language English
Journal Section TJST
Authors

Gökhan Kırat 0000-0001-7357-2921

Publication Date March 29, 2023
Submission Date November 23, 2022
Published in Issue Year 2023 Volume: 18 Issue: 1

Cite

APA Kırat, G. (2023). Variation of Electrical Resistivity During Magnetic Field-Induced Martensitic Transformation in Vanadium added NiMnSnB alloys. Turkish Journal of Science and Technology, 18(1), 131-138. https://doi.org/10.55525/tjst.1209085
AMA Kırat G. Variation of Electrical Resistivity During Magnetic Field-Induced Martensitic Transformation in Vanadium added NiMnSnB alloys. TJST. March 2023;18(1):131-138. doi:10.55525/tjst.1209085
Chicago Kırat, Gökhan. “Variation of Electrical Resistivity During Magnetic Field-Induced Martensitic Transformation in Vanadium Added NiMnSnB Alloys”. Turkish Journal of Science and Technology 18, no. 1 (March 2023): 131-38. https://doi.org/10.55525/tjst.1209085.
EndNote Kırat G (March 1, 2023) Variation of Electrical Resistivity During Magnetic Field-Induced Martensitic Transformation in Vanadium added NiMnSnB alloys. Turkish Journal of Science and Technology 18 1 131–138.
IEEE G. Kırat, “Variation of Electrical Resistivity During Magnetic Field-Induced Martensitic Transformation in Vanadium added NiMnSnB alloys”, TJST, vol. 18, no. 1, pp. 131–138, 2023, doi: 10.55525/tjst.1209085.
ISNAD Kırat, Gökhan. “Variation of Electrical Resistivity During Magnetic Field-Induced Martensitic Transformation in Vanadium Added NiMnSnB Alloys”. Turkish Journal of Science and Technology 18/1 (March 2023), 131-138. https://doi.org/10.55525/tjst.1209085.
JAMA Kırat G. Variation of Electrical Resistivity During Magnetic Field-Induced Martensitic Transformation in Vanadium added NiMnSnB alloys. TJST. 2023;18:131–138.
MLA Kırat, Gökhan. “Variation of Electrical Resistivity During Magnetic Field-Induced Martensitic Transformation in Vanadium Added NiMnSnB Alloys”. Turkish Journal of Science and Technology, vol. 18, no. 1, 2023, pp. 131-8, doi:10.55525/tjst.1209085.
Vancouver Kırat G. Variation of Electrical Resistivity During Magnetic Field-Induced Martensitic Transformation in Vanadium added NiMnSnB alloys. TJST. 2023;18(1):131-8.