Research Article
BibTex RIS Cite

Predicting the Height of Individuals with Machine Learning Methods by Considering Non-Genetic Factors

Year 2023, Volume: 18 Issue: 1, 233 - 241, 29.03.2023
https://doi.org/10.55525/tjst.1248426

Abstract

As many parents want to know how many centimeters their child will be in the future, many people in their developmental years want to know how many centimeters their future height will be. In addition, the development of children in terms of height and weight is medically controlled from the moment they are born. As a result, height development is important for both individuals and medical professionals. In this study, it is aimed to predict the height of individuals using personal and family information and factors affecting height. In the study, the 10 most known characteristics among the factors affecting height were selected. These attributes, mother's height, father's height, economic status, jumping and weight sports status, gender, information about the child's age, history of chronic illness in the individual, the longest living region, and the individual's height were taken as input values in machine learning methods. Using these input values, the length of the individual was predicted using Linear Regression (LR) and Artificial Neural Network (ANN) from machine learning methods. In addition, three error measurement methods were used to evaluate the success of the model: mean absolute error (MAE), mean square error (MSE) and R-Square (R^2). In the R^2 evaluation metric, the method was 84.48% in LR and 81.74% in ANN.

References

  • Ummanel A, Dilek A. Gelişim ve öğrenme. Öğr İlke ve Yönt; (2016): 35-52.
  • Uzun S. Yaşlılarda, kadınlarda ve adölasanlarda kişilik algısı değişimi ve nedenleri. J Humanit Soc Sci 2020; 3 (1): 431-449.
  • Panch T, Szolovits P, Atun R. Artificial intelligence, machine learning and health systems. J Glob Health 2018; 8(2).
  • Coşkun F, Gülleroğlu HD. Yapay zekânın tarih içindeki gelişimi ve eğitimde kullanılması. Ankara Univ J of Fac of Educ Sci (JFES) 2021; 54(3): 947-966.
  • Ersöz F, Çınar Y. Veri madenciliği ve makine öğrenimi yaklaşımlarının karşılaştırılması: Tekstil sektöründe bir uygulama. Avrupa Bilim ve Teknoloji Dergisi 2021; (29): 397-414.
  • Aytekin HT. Makine öğreniminin araştırmacıl arın veri analizi bağlamında potansiyel önemi. Ufuk Üniversitesi Sosyal Bilimler Enstitü Dergisi 10(19): 85-106.
  • Atalay M, Çelik E. Büyük veri analizinde yapay zekâ ve makine öğrenmesi uygulamalari-artificial intelligence and machine learning applications in big data analysis. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitü Dergisi 2017; 9(22): 155-172.
  • Sarker IH. Machine learning: Algorithms, real-world applications and research directions. SN Comput Sci 2021; 2(3): 160.
  • Esfe MH, Ahangar MRH, Rejvani M, Toghraie D, Hajmohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transfer 2016; 75: 192-196.
  • Ulas M, Altay O, Gurgenc T, Özel C. A new approach for prediction of the wear loss of PTA surface coatings using artificial neural network and basic, kernel-based, and weighted extreme learning machine. Friction 2020; 8: 1102-1116.
  • Mukherjee A, Biswas SN. Artificial neural networks in prediction of mechanical behavior of concrete at high temperature. Nucl Eng Des 1997; 178(1): 1-11.
  • Yu X, Ye C, Xiang L. Application of artificial neural network in the diagnostic system of osteoporosis. Neurocomputing 2016; 214: 376-381.
  • Simpson PK. Artificial neural systems: foundations, paradigms, applications, and implementations. McGraw-Hill, Inc., 1991.
  • Momeni E, Armaghani DJ, Hajihassani M, Amin MFM. Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 2015; 60: 50-63.
  • Dreyfus G. Neural networks: methodology and applications. Springer Science & Business Media 2005.
  • Altay O, Gurgenc T, Ulas M, Özel C. Prediction of wear loss quantities of ferro-alloy coating using different machine learning algorithm. Friction 2020; 8: 107-114.
  • Gültepe Y. Makine öğrenmesi algoritmaları ile hava kirliliği tahmini üzerine karşılaştırmalı bir değerlendirme. Avrupa Bilim ve Teknoloji Dergisi 2019; (16): 8-15.
  • Iqbal N, Khan AN, Rizwan A, Ahmad R, Kim BW, Kim K, Kim DH. Groundwater level prediction model using correlation and difference mechanisms based on boreholes data for sustainable hydraulic resource management. IEEE Access 2021; 9: 96092-96113.
  • Altay O, Varol Altay E. A novel hybrid multilayer perceptron neural network with improved grey wolf optimizer. Neural Comput Appl 2023; 35(1): 529-556.
  • Gurgenç T, Altay O. St37 çeliğinin tornalanmasında yüzey pürüzlülüğünün destek vektör regresyonu kullanılarak tahmini. Firat Univ J of Eng Sci 2022; 34(2).
  • Gurgenc T, Altay O. Surface roughness prediction of wire electric discharge machining (WEDM)-machined AZ91D magnesium alloy using multilayer perceptron, ensemble neural network, and evolving product-unit neural network. Mater Test 2022; 64(3): 350-362.
Year 2023, Volume: 18 Issue: 1, 233 - 241, 29.03.2023
https://doi.org/10.55525/tjst.1248426

Abstract

References

  • Ummanel A, Dilek A. Gelişim ve öğrenme. Öğr İlke ve Yönt; (2016): 35-52.
  • Uzun S. Yaşlılarda, kadınlarda ve adölasanlarda kişilik algısı değişimi ve nedenleri. J Humanit Soc Sci 2020; 3 (1): 431-449.
  • Panch T, Szolovits P, Atun R. Artificial intelligence, machine learning and health systems. J Glob Health 2018; 8(2).
  • Coşkun F, Gülleroğlu HD. Yapay zekânın tarih içindeki gelişimi ve eğitimde kullanılması. Ankara Univ J of Fac of Educ Sci (JFES) 2021; 54(3): 947-966.
  • Ersöz F, Çınar Y. Veri madenciliği ve makine öğrenimi yaklaşımlarının karşılaştırılması: Tekstil sektöründe bir uygulama. Avrupa Bilim ve Teknoloji Dergisi 2021; (29): 397-414.
  • Aytekin HT. Makine öğreniminin araştırmacıl arın veri analizi bağlamında potansiyel önemi. Ufuk Üniversitesi Sosyal Bilimler Enstitü Dergisi 10(19): 85-106.
  • Atalay M, Çelik E. Büyük veri analizinde yapay zekâ ve makine öğrenmesi uygulamalari-artificial intelligence and machine learning applications in big data analysis. Mehmet Akif Ersoy Üniversitesi Sosyal Bilimler Enstitü Dergisi 2017; 9(22): 155-172.
  • Sarker IH. Machine learning: Algorithms, real-world applications and research directions. SN Comput Sci 2021; 2(3): 160.
  • Esfe MH, Ahangar MRH, Rejvani M, Toghraie D, Hajmohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transfer 2016; 75: 192-196.
  • Ulas M, Altay O, Gurgenc T, Özel C. A new approach for prediction of the wear loss of PTA surface coatings using artificial neural network and basic, kernel-based, and weighted extreme learning machine. Friction 2020; 8: 1102-1116.
  • Mukherjee A, Biswas SN. Artificial neural networks in prediction of mechanical behavior of concrete at high temperature. Nucl Eng Des 1997; 178(1): 1-11.
  • Yu X, Ye C, Xiang L. Application of artificial neural network in the diagnostic system of osteoporosis. Neurocomputing 2016; 214: 376-381.
  • Simpson PK. Artificial neural systems: foundations, paradigms, applications, and implementations. McGraw-Hill, Inc., 1991.
  • Momeni E, Armaghani DJ, Hajihassani M, Amin MFM. Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 2015; 60: 50-63.
  • Dreyfus G. Neural networks: methodology and applications. Springer Science & Business Media 2005.
  • Altay O, Gurgenc T, Ulas M, Özel C. Prediction of wear loss quantities of ferro-alloy coating using different machine learning algorithm. Friction 2020; 8: 107-114.
  • Gültepe Y. Makine öğrenmesi algoritmaları ile hava kirliliği tahmini üzerine karşılaştırmalı bir değerlendirme. Avrupa Bilim ve Teknoloji Dergisi 2019; (16): 8-15.
  • Iqbal N, Khan AN, Rizwan A, Ahmad R, Kim BW, Kim K, Kim DH. Groundwater level prediction model using correlation and difference mechanisms based on boreholes data for sustainable hydraulic resource management. IEEE Access 2021; 9: 96092-96113.
  • Altay O, Varol Altay E. A novel hybrid multilayer perceptron neural network with improved grey wolf optimizer. Neural Comput Appl 2023; 35(1): 529-556.
  • Gurgenç T, Altay O. St37 çeliğinin tornalanmasında yüzey pürüzlülüğünün destek vektör regresyonu kullanılarak tahmini. Firat Univ J of Eng Sci 2022; 34(2).
  • Gurgenc T, Altay O. Surface roughness prediction of wire electric discharge machining (WEDM)-machined AZ91D magnesium alloy using multilayer perceptron, ensemble neural network, and evolving product-unit neural network. Mater Test 2022; 64(3): 350-362.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section TJST
Authors

Tugba Celikten 0000-0001-7480-4026

Hüseyin Yasin Dönmez 0000-0002-6431-7520

Tuba Akbas 0000-0002-5583-8375

Osman Altay 0000-0003-3989-2432

Publication Date March 29, 2023
Submission Date February 6, 2023
Published in Issue Year 2023 Volume: 18 Issue: 1

Cite

APA Celikten, T., Dönmez, H. Y., Akbas, T., Altay, O. (2023). Predicting the Height of Individuals with Machine Learning Methods by Considering Non-Genetic Factors. Turkish Journal of Science and Technology, 18(1), 233-241. https://doi.org/10.55525/tjst.1248426
AMA Celikten T, Dönmez HY, Akbas T, Altay O. Predicting the Height of Individuals with Machine Learning Methods by Considering Non-Genetic Factors. TJST. March 2023;18(1):233-241. doi:10.55525/tjst.1248426
Chicago Celikten, Tugba, Hüseyin Yasin Dönmez, Tuba Akbas, and Osman Altay. “Predicting the Height of Individuals With Machine Learning Methods by Considering Non-Genetic Factors”. Turkish Journal of Science and Technology 18, no. 1 (March 2023): 233-41. https://doi.org/10.55525/tjst.1248426.
EndNote Celikten T, Dönmez HY, Akbas T, Altay O (March 1, 2023) Predicting the Height of Individuals with Machine Learning Methods by Considering Non-Genetic Factors. Turkish Journal of Science and Technology 18 1 233–241.
IEEE T. Celikten, H. Y. Dönmez, T. Akbas, and O. Altay, “Predicting the Height of Individuals with Machine Learning Methods by Considering Non-Genetic Factors”, TJST, vol. 18, no. 1, pp. 233–241, 2023, doi: 10.55525/tjst.1248426.
ISNAD Celikten, Tugba et al. “Predicting the Height of Individuals With Machine Learning Methods by Considering Non-Genetic Factors”. Turkish Journal of Science and Technology 18/1 (March 2023), 233-241. https://doi.org/10.55525/tjst.1248426.
JAMA Celikten T, Dönmez HY, Akbas T, Altay O. Predicting the Height of Individuals with Machine Learning Methods by Considering Non-Genetic Factors. TJST. 2023;18:233–241.
MLA Celikten, Tugba et al. “Predicting the Height of Individuals With Machine Learning Methods by Considering Non-Genetic Factors”. Turkish Journal of Science and Technology, vol. 18, no. 1, 2023, pp. 233-41, doi:10.55525/tjst.1248426.
Vancouver Celikten T, Dönmez HY, Akbas T, Altay O. Predicting the Height of Individuals with Machine Learning Methods by Considering Non-Genetic Factors. TJST. 2023;18(1):233-41.