Research Article
BibTex RIS Cite

Öznitelik Seçim Algoritmalarının Kombinasyonu ile Kardiyak Aritminin Sınıflandırılması

Year 2024, Volume: 19 Issue: 1, 147 - 159, 28.03.2024
https://doi.org/10.55525/tjst.1324854

Abstract

Kalp hastalıklarının önceden tahmin edilmesi son yıllarda büyük önem kazanmıştır. Kalp hastalarının etkin bir şekilde izlenmesi, sayısız hayatın kurtarılmasını sağlayabilir. Bu makale, kardiyak aritmi riski taşıyan 452 hastadan elde edilen elektrokardiyogram verilerinin sınıflandırılması ve hastalıkların tahmin edilmesi için yenilikçi bir yöntem sunmaktadır. Bu çalışmanın ana hedefi, üç farklı öznitelik seçme algoritmasını kullanarak aritmi riski ile yüksek derecede bağlılık gösteren özniteliklerin seçilmesidir. Ayrıca, sınıflandırma görevi için En yakın komşular algoritması(k-NN), Destek Vektör Makineleri (SVM) ve Karar Ağaçları (DT) gibi çeşitli makine öğrenimi modelleri kullanılmaktadır. Deneysel sonuçlar, Destek Vektör Makineleri (SVM) sınıflandırıcısı ve "Eşleştirilmiş Seçim" öznitelik seçim yönteminin diğer kombinasyonları geride bıraktığını göstermektedir. Bu kombinasyon %81.27 doğruluk oranına sahipken, k-NN ve DT sınıflandırıcılarının doğruluk oranları sırasıyla %69.66 ve %73.50'dir. "Detaylı analizlerin karşılaştırmalı olarak sunulduğu bu çalışma, gelecekteki araştırmalar için umut vadetmektedir.

References

  • Krikler DM. "Historical aspects of electrocardiography." Cardiol Clin, vol. 5, no. 3, pp. 349-355, Aug. 1987.
  • Zimetbaum PJ, Josephson ME. "Use of the electrocardiogram in acute myocardial infarction." N Engl J Med, vol. 348, no. 10, pp. 933-940, Mar. 06, 2003.
  • Güvenir HA, Acar B, Demiroz G, Cekin A. "A supervised machine learning algorithm for arrhythmia analysis." Computers in Cardiology 1997, pp. 433-436.
  • Fu, Dg. "Cardiac Arrhythmias: Diagnosis, Symptoms, and Treatments." Cell Biochem Biophys, vol. 73, pp. 291–296, 2015. DOI: https://doi.org/10.1007/s12013-015-0626-4.
  • Niazi KAK, Khan SA, Shaukat A, Akhtar M. "Identifying best feature subset for cardiac arrhythmia classification." In Proceedings of the 2015 Science and Information Conference, SAI 2015, London, UK, 28–30 July 2015, pp. 494–499.
  • Isin, A., Ozdalili, S. "Cardiac arrhythmia detection using deep learning." Procedia Computer Science, vol. 120, pp. 268-275, 2017. DOI: https://doi.org/10.1016/j.procs.2017.11.238.
  • Sannino, G., De Pietro, G. "A deep learning approach for ECG-based heartbeat classification for arrhythmia detection." Future Generation Computer Systems, vol. 86, pp. 446-455, 2018. DOI: https://doi.org/10.1016/j.future.2018.03.057.
  • Alfaras, M., Soriano, M.C., Ortín, S. "A Fast Machine Learning Model for ECG-Based Heartbeat Classification and Arrhythmia Detection." Frontiers in Physics, vol. 7, 2019. DOI: https://doi.org/10.3389/fphy.2019.00103.
  • Toğaçar, M., Ergen, B., Cömert, Z. "Detection of lung cancer on chest CT images using minimum redundancy maximum relevance feature selection method with convolutional neural networks." Biocybernetics and Biomedical Engineering, vol. 40, no. 1, pp. 23-39, 2020.
  • Güney, S., Ergün, G.B. "Classification of Canine Maturity and Bone Fracture Time Based on X-Ray Images of Long Bones." IEEE Access, vol. 9, pp. 109004-109011, 2021. DOI: 10.1109/ACCESS.2021.3101040.
  • Çıklaçandır Y., Karabiber Cura F., Özlem O. "A Comparative Study on Different Feature Selection Methods for Malaria Detection." 1-4, 2023. DOI: 10.1109/TIPTEKNO59875.2023.10359193.
  • Ergün GB, Güney S. "A Comparison of the Multivariate Calibration Methods with Feature Selection for Gas Sensors’ Long‐Term Drift Effect." Uluslararası Teknolojik Bilimler Dergisi, c. 11, sayı. 3, ss. 170-176, Ara. 2019.
  • Alshamlan, H., Omar, S., Aljurayyad, R., Alabduljabbar, R. "Identifying Effective Feature Selection Methods for Alzheimer’s Disease Biomarker Gene Detection Using Machine Learning." Diagnostics, 13, 1771, 2023. DOI: 10.3390/diagnostics13101771.
  • Newman D, Hettich S, Blake C, Merz C (1998). “UCI Repository of machine learning databases.” http://www.ics.uci.edu/~mlearn/MLRepository.html.
  • Ergün GB, Güney S. "A Comparison Study for Image Classification and Feature Selection." 4th International Conference on Computational Mathematics and Engineering Sciences, Antalya, 20-22 April 2019.
  • Chen G., Chen J. "A novel wrapper method for feature selection and its applications." Neurocomputing, vol. 159, pp. 219-226, 2015. DOI: https://doi.org/10.1016/j.neucom.2015.01.070.
  • Chandrashekar G., Sahin F. "A survey on feature selection methods." Computers & Electrical Engineering, vol. 40, no. 1, pp. 16-28, 2014. DOI: https://doi.org/10.1016/j.compeleceng.2013.11.024.
  • Bugata P., Drotar P. "On some aspects of minimum redundancy maximum relevance feature selection." Sci. China Inf. Sci., vol. 63, p. 112103, 2020. DOI: https://doi.org/10.1007/s11432-019-2633.
  • Thaseen IS., Kumar CA. "Intrusion detection model using fusion of chi-square feature selection and multi class SVM." Journal of King Saud University - Computer and Information Sciences, vol. 29, no. 4, pp. 462-472, 2017. DOI: https://doi.org/10.1016/j.jksuci.2015.12.004.
  • Cover TM., Hart PE. "Nearest neighbor pattern classification." IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21-27, 1967. DOI: 10.1109/TIT.1967.1053964.
  • Cristianini N., Ricci E. "Support Vector Machines." In: Kao MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA, 2008. DOI: https://doi.org/10.1007/978-0-387-30162-4_415.
  • Quinlan JR. "Induction of Decision Trees." Mach. Learn., vol. 1, no. 1, pp. 81-106, Mar. 1986.

Classification of the Cardiac Arrhythmia Using Combined Feature Selection Algorithms

Year 2024, Volume: 19 Issue: 1, 147 - 159, 28.03.2024
https://doi.org/10.55525/tjst.1324854

Abstract

The prediction of heart disease has gained great importance in recent years. Efficient monitoring of cardiac patients can save tremendous number of lives. This paper presents a method for classification and prediction of electrocardiogram data obtained from 452 patients representing the risk of cardiac arrhythmia. The aim of the study is to select highly related features with arrhythmia risk by using three different feature selection algorithms. In addition, various machine learning models are utilized for the classification task such as k-Nearest Neighbors (k-NN), Support Vector Machines (SVM) and Decision Tree (DT). The experimental results show that combination of a purposed feature selection method which later is called “Matched Selection” using SVM classifier outperforms other combinations and have an accuracy of 81.27% while k-NN and DT classifiers have an accuracy of 69.66% and 73.50% respectively. The study, in which detailed analyses are presented comparatively, is promising for the future studies.

References

  • Krikler DM. "Historical aspects of electrocardiography." Cardiol Clin, vol. 5, no. 3, pp. 349-355, Aug. 1987.
  • Zimetbaum PJ, Josephson ME. "Use of the electrocardiogram in acute myocardial infarction." N Engl J Med, vol. 348, no. 10, pp. 933-940, Mar. 06, 2003.
  • Güvenir HA, Acar B, Demiroz G, Cekin A. "A supervised machine learning algorithm for arrhythmia analysis." Computers in Cardiology 1997, pp. 433-436.
  • Fu, Dg. "Cardiac Arrhythmias: Diagnosis, Symptoms, and Treatments." Cell Biochem Biophys, vol. 73, pp. 291–296, 2015. DOI: https://doi.org/10.1007/s12013-015-0626-4.
  • Niazi KAK, Khan SA, Shaukat A, Akhtar M. "Identifying best feature subset for cardiac arrhythmia classification." In Proceedings of the 2015 Science and Information Conference, SAI 2015, London, UK, 28–30 July 2015, pp. 494–499.
  • Isin, A., Ozdalili, S. "Cardiac arrhythmia detection using deep learning." Procedia Computer Science, vol. 120, pp. 268-275, 2017. DOI: https://doi.org/10.1016/j.procs.2017.11.238.
  • Sannino, G., De Pietro, G. "A deep learning approach for ECG-based heartbeat classification for arrhythmia detection." Future Generation Computer Systems, vol. 86, pp. 446-455, 2018. DOI: https://doi.org/10.1016/j.future.2018.03.057.
  • Alfaras, M., Soriano, M.C., Ortín, S. "A Fast Machine Learning Model for ECG-Based Heartbeat Classification and Arrhythmia Detection." Frontiers in Physics, vol. 7, 2019. DOI: https://doi.org/10.3389/fphy.2019.00103.
  • Toğaçar, M., Ergen, B., Cömert, Z. "Detection of lung cancer on chest CT images using minimum redundancy maximum relevance feature selection method with convolutional neural networks." Biocybernetics and Biomedical Engineering, vol. 40, no. 1, pp. 23-39, 2020.
  • Güney, S., Ergün, G.B. "Classification of Canine Maturity and Bone Fracture Time Based on X-Ray Images of Long Bones." IEEE Access, vol. 9, pp. 109004-109011, 2021. DOI: 10.1109/ACCESS.2021.3101040.
  • Çıklaçandır Y., Karabiber Cura F., Özlem O. "A Comparative Study on Different Feature Selection Methods for Malaria Detection." 1-4, 2023. DOI: 10.1109/TIPTEKNO59875.2023.10359193.
  • Ergün GB, Güney S. "A Comparison of the Multivariate Calibration Methods with Feature Selection for Gas Sensors’ Long‐Term Drift Effect." Uluslararası Teknolojik Bilimler Dergisi, c. 11, sayı. 3, ss. 170-176, Ara. 2019.
  • Alshamlan, H., Omar, S., Aljurayyad, R., Alabduljabbar, R. "Identifying Effective Feature Selection Methods for Alzheimer’s Disease Biomarker Gene Detection Using Machine Learning." Diagnostics, 13, 1771, 2023. DOI: 10.3390/diagnostics13101771.
  • Newman D, Hettich S, Blake C, Merz C (1998). “UCI Repository of machine learning databases.” http://www.ics.uci.edu/~mlearn/MLRepository.html.
  • Ergün GB, Güney S. "A Comparison Study for Image Classification and Feature Selection." 4th International Conference on Computational Mathematics and Engineering Sciences, Antalya, 20-22 April 2019.
  • Chen G., Chen J. "A novel wrapper method for feature selection and its applications." Neurocomputing, vol. 159, pp. 219-226, 2015. DOI: https://doi.org/10.1016/j.neucom.2015.01.070.
  • Chandrashekar G., Sahin F. "A survey on feature selection methods." Computers & Electrical Engineering, vol. 40, no. 1, pp. 16-28, 2014. DOI: https://doi.org/10.1016/j.compeleceng.2013.11.024.
  • Bugata P., Drotar P. "On some aspects of minimum redundancy maximum relevance feature selection." Sci. China Inf. Sci., vol. 63, p. 112103, 2020. DOI: https://doi.org/10.1007/s11432-019-2633.
  • Thaseen IS., Kumar CA. "Intrusion detection model using fusion of chi-square feature selection and multi class SVM." Journal of King Saud University - Computer and Information Sciences, vol. 29, no. 4, pp. 462-472, 2017. DOI: https://doi.org/10.1016/j.jksuci.2015.12.004.
  • Cover TM., Hart PE. "Nearest neighbor pattern classification." IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21-27, 1967. DOI: 10.1109/TIT.1967.1053964.
  • Cristianini N., Ricci E. "Support Vector Machines." In: Kao MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA, 2008. DOI: https://doi.org/10.1007/978-0-387-30162-4_415.
  • Quinlan JR. "Induction of Decision Trees." Mach. Learn., vol. 1, no. 1, pp. 81-106, Mar. 1986.
There are 22 citations in total.

Details

Primary Language English
Subjects Reinforcement Learning
Journal Section TJST
Authors

Murat Tunç 0009-0008-4994-3858

Gülnur Begüm Cangöz 0000-0001-8469-5484

Publication Date March 28, 2024
Submission Date July 12, 2023
Published in Issue Year 2024 Volume: 19 Issue: 1

Cite

APA Tunç, M., & Cangöz, G. B. (2024). Classification of the Cardiac Arrhythmia Using Combined Feature Selection Algorithms. Turkish Journal of Science and Technology, 19(1), 147-159. https://doi.org/10.55525/tjst.1324854
AMA Tunç M, Cangöz GB. Classification of the Cardiac Arrhythmia Using Combined Feature Selection Algorithms. TJST. March 2024;19(1):147-159. doi:10.55525/tjst.1324854
Chicago Tunç, Murat, and Gülnur Begüm Cangöz. “Classification of the Cardiac Arrhythmia Using Combined Feature Selection Algorithms”. Turkish Journal of Science and Technology 19, no. 1 (March 2024): 147-59. https://doi.org/10.55525/tjst.1324854.
EndNote Tunç M, Cangöz GB (March 1, 2024) Classification of the Cardiac Arrhythmia Using Combined Feature Selection Algorithms. Turkish Journal of Science and Technology 19 1 147–159.
IEEE M. Tunç and G. B. Cangöz, “Classification of the Cardiac Arrhythmia Using Combined Feature Selection Algorithms”, TJST, vol. 19, no. 1, pp. 147–159, 2024, doi: 10.55525/tjst.1324854.
ISNAD Tunç, Murat - Cangöz, Gülnur Begüm. “Classification of the Cardiac Arrhythmia Using Combined Feature Selection Algorithms”. Turkish Journal of Science and Technology 19/1 (March 2024), 147-159. https://doi.org/10.55525/tjst.1324854.
JAMA Tunç M, Cangöz GB. Classification of the Cardiac Arrhythmia Using Combined Feature Selection Algorithms. TJST. 2024;19:147–159.
MLA Tunç, Murat and Gülnur Begüm Cangöz. “Classification of the Cardiac Arrhythmia Using Combined Feature Selection Algorithms”. Turkish Journal of Science and Technology, vol. 19, no. 1, 2024, pp. 147-59, doi:10.55525/tjst.1324854.
Vancouver Tunç M, Cangöz GB. Classification of the Cardiac Arrhythmia Using Combined Feature Selection Algorithms. TJST. 2024;19(1):147-59.