Ambarzumyan Theorem for Conformable Type Sturm-Liouville Problem on Time Scales
Year 2024,
Volume: 19 Issue: 1, 39 - 44, 28.03.2024
Ayşe Çiğdem Yar
,
Tuba Gulsen
,
Emrah Yılmaz
Abstract
In this study, we give an Ambarzumyan type theorem for a Sturm-Liouville dynamic equation which includes conformable type derivative on time scales with conformable Robin boundary conditions. Under certain conditions, we prove that potential function can be determined by using only first eigenvalue.
References
- Hilger S. Analysis on measure chains– a unified approach to continuous and discrete calculus. Results Math 1990; 18(1-2): 18–56.
- Erbe L, Hilger S. Sturmian theory on measure chains. Differ Equ Dyn Syst 1993; 1(3): 223–244.
- Agarwal RP, Bohner M, Wong PJY. Sturm-Liouville eigenvalue problems on time scales. Appl Math Comput 1999; 99(1-2): 153–166.
- Amster P, De Nápoli P, Pinasco JP. Eigenvalue distribution of second-order dynamic equations on time scales considered as fractals. J Math Anal Appl 2008; 343(1): 573–584.
- Amster P, De Nápoli P, Pinasco JP. Detailed asymptotic of eigenvalues on time scales. J Differ Equ Appl 2009; 15(3): 225–231.
- Guseinov GSh. Eigenfunction expansions for a Sturm-Liouville problem on time scales. Int J Differ Equ 2007; 2(1): 93–104.
- Guseinov GSh. An expansion theorem for a Sturm-Liouville operator on semi-unbounded time scales. Adv Dyn Syst Appl 2008; 3(1): 147-160.
- Davidson FA, Rynne BP. Eigenfunction expansions in L^2spaces for boundary value problems on time-scales. J Math Anal Appl 2007; 335(2): 1038–1051.
- Davidson FA, Rynne BP. Self-adjoint boundary value problems on time scales. Electron J Differ Equ 2007; 175(2): 1–10.
- Huseynov A, Bairamov E. On expansions in eigenfunctions for second order dynamic equations on time scales. Nonlinear Dyn Syst Theory 2009; 9(1): 77–88.
- Kong Q. Sturm-Liouville problems on time scales with separated boundary conditions. Results Math 2008; 52(1-2): 111-121.
- Rynne BP. L^2 spaces and boundary value problems on time scales. J Math Anal Appl 2007; 328(2): 1217–1236.
- Ambarzumyan VA. Über eine Frage der Eigenwerttheorie. Z Physik 1929; 53: 690-695.
- Freiling G, Yurko VA. Inverse Sturm–Liouville Problems and Their Applications, Nova Science: Hauppauge, 2001.
- Yurko VA. On Ambarzumyan-type theorems. Appl Math Lett 2013; 26(4): 506-509.
- Ozkan AS. Ambarzumyan-type theorems on a time scale. J Inverse Ill-posed Probl 2018; 26(5): 633-637.
- Atkinson FV. Discrete and Continuous Boundary Problems. New York: Academic Press, 1964.
- Bohner M, Peterson A. Dynamic Equations on Time Scales. An Introduction with Applications. Boston: Birkhäuser, 2001.
- Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales. Boston: Birkhäuser, 2003.
- Kilbas A, Srivastasa H, Trujillo J. Theory and Applications of Fractional Differential Equations. Math Studies, New York: North-Holland, 2006.
- Khalil R, Al Horani M, Yousef, A, Sababheh M. A new definition of fractional derivative. J Comput Appl Math 2014; 264: 65-70.
- Martinez F, Martinez I, Kaabar MKA, Ortiz-Munuera R, Paredes S. Note on the Conformable Fractional Derivatives and Integrals of Complex-valued Functions of a Real Variable. Int J Appl Math 2020; 50(3): 609-615.
- Benkhettou N, Hassani S, Torres DFM. A conformable fractional calculus on arbitrary time scales. J King Saud Univ Sci 2016; 28(1): 93-98.
- Gulsen T, Yilmaz E, Goktas S. Conformable fractional Dirac system on time scales. J Inequal Appl 2017; 161(2017): 1-10.
Zaman Skalasında Uyumlu Tip Sturm-Liouville Problemi için Ambarzumyan Teoremi
Year 2024,
Volume: 19 Issue: 1, 39 - 44, 28.03.2024
Ayşe Çiğdem Yar
,
Tuba Gulsen
,
Emrah Yılmaz
Abstract
Bu çalışmada, uygun Robin sınır koşullarına sahip zaman skalasında uyumlu türev içeren bir Sturm-Liouville dinamik denklemi için Ambarzumyan tipi bir teorem veriyoruz. Belirli koşullar altında potansiyel fonksiyonun yalnızca birinci özdeğer kullanılarak belirlenebileceğini kanıtlıyoruz.
References
- Hilger S. Analysis on measure chains– a unified approach to continuous and discrete calculus. Results Math 1990; 18(1-2): 18–56.
- Erbe L, Hilger S. Sturmian theory on measure chains. Differ Equ Dyn Syst 1993; 1(3): 223–244.
- Agarwal RP, Bohner M, Wong PJY. Sturm-Liouville eigenvalue problems on time scales. Appl Math Comput 1999; 99(1-2): 153–166.
- Amster P, De Nápoli P, Pinasco JP. Eigenvalue distribution of second-order dynamic equations on time scales considered as fractals. J Math Anal Appl 2008; 343(1): 573–584.
- Amster P, De Nápoli P, Pinasco JP. Detailed asymptotic of eigenvalues on time scales. J Differ Equ Appl 2009; 15(3): 225–231.
- Guseinov GSh. Eigenfunction expansions for a Sturm-Liouville problem on time scales. Int J Differ Equ 2007; 2(1): 93–104.
- Guseinov GSh. An expansion theorem for a Sturm-Liouville operator on semi-unbounded time scales. Adv Dyn Syst Appl 2008; 3(1): 147-160.
- Davidson FA, Rynne BP. Eigenfunction expansions in L^2spaces for boundary value problems on time-scales. J Math Anal Appl 2007; 335(2): 1038–1051.
- Davidson FA, Rynne BP. Self-adjoint boundary value problems on time scales. Electron J Differ Equ 2007; 175(2): 1–10.
- Huseynov A, Bairamov E. On expansions in eigenfunctions for second order dynamic equations on time scales. Nonlinear Dyn Syst Theory 2009; 9(1): 77–88.
- Kong Q. Sturm-Liouville problems on time scales with separated boundary conditions. Results Math 2008; 52(1-2): 111-121.
- Rynne BP. L^2 spaces and boundary value problems on time scales. J Math Anal Appl 2007; 328(2): 1217–1236.
- Ambarzumyan VA. Über eine Frage der Eigenwerttheorie. Z Physik 1929; 53: 690-695.
- Freiling G, Yurko VA. Inverse Sturm–Liouville Problems and Their Applications, Nova Science: Hauppauge, 2001.
- Yurko VA. On Ambarzumyan-type theorems. Appl Math Lett 2013; 26(4): 506-509.
- Ozkan AS. Ambarzumyan-type theorems on a time scale. J Inverse Ill-posed Probl 2018; 26(5): 633-637.
- Atkinson FV. Discrete and Continuous Boundary Problems. New York: Academic Press, 1964.
- Bohner M, Peterson A. Dynamic Equations on Time Scales. An Introduction with Applications. Boston: Birkhäuser, 2001.
- Bohner M, Peterson A. Advances in Dynamic Equations on Time Scales. Boston: Birkhäuser, 2003.
- Kilbas A, Srivastasa H, Trujillo J. Theory and Applications of Fractional Differential Equations. Math Studies, New York: North-Holland, 2006.
- Khalil R, Al Horani M, Yousef, A, Sababheh M. A new definition of fractional derivative. J Comput Appl Math 2014; 264: 65-70.
- Martinez F, Martinez I, Kaabar MKA, Ortiz-Munuera R, Paredes S. Note on the Conformable Fractional Derivatives and Integrals of Complex-valued Functions of a Real Variable. Int J Appl Math 2020; 50(3): 609-615.
- Benkhettou N, Hassani S, Torres DFM. A conformable fractional calculus on arbitrary time scales. J King Saud Univ Sci 2016; 28(1): 93-98.
- Gulsen T, Yilmaz E, Goktas S. Conformable fractional Dirac system on time scales. J Inequal Appl 2017; 161(2017): 1-10.