Investigation of the Effect of Grain Size and Wire Size on the Mechanical and Structural Properties of Polycrystalline Ni Nano Wire Using Molecular Dynamics Simulation
Year 2025,
Volume: 20 Issue: 1, 17 - 27
Sefa Kazanç
,
Canan Aksu Canbay
Abstract
The effect of grain size and length-to-diameter ratio (LDR) on the mechanical properties of polycrystalline Ni nanowire was examined by molecular dynamics simulation as a result of uniaxial tensile deformation applied at a temperature of 300 K. The Embedded Atom Method (EAM) was used to determine the forces acting on the nanowire atoms. Elastic modulus (E), yield strength and fracture stress values were determined from the stress-strain relationship determined as a result of the deformation process. Microstructural changes resulting from plastic deformation were examined from the atomic positions determined using the common neighbor analysis method (CNA). It was determined that grain size and LDR had a significant effect on the deformation behavior of Ni nanowire, and plastic deformation and breaks resulted from the rearrangement of atomic positions by surface effect and also the nanowires with small grain size and LDR exhibited superplasticity behavior. The grain size in the modeled polycrystalline nanowire system affected the movement mechanisms of the grains, grain boundaries, and the relationship between grain size and flow force was investigated. From this relationship, the Hall-Petch effect and the reverse Hall-Petch effect were observed after a certain critical grain size.
References
- Lu W, Lieber CM. Semiconductor nanowires. J Phys Appl Phys 2006; 39(21): 387.
- Rurali R. Colloquium: Structural, electronic, and transport properties of silicon nanowires. Rev Mod Phys 2010; 82(1): 427, 2010.
- Park HS, Zimmerman JA. Modeling inelasticity and failure in gold nanowires. Physical Review B 2005; 72: 054106.
- Veerababu J, Nagesha A, Shankar V. Slip to twinning to slip transition in polycrystalline BCC-Fe: Effect of grain size. Physica B: Condensed Matter 2024; 694: 416465.
- Niu Y, Jia Y, Lv X, Zhu Y, Wang Y. Molecular dynamics simulations of polycrystalline titanium mechanical properties: Grain size effect. Materials Today Communications. 2024; 40: 109558.
- Suryavanshi AP, Yu MF. Probe-based electrochemical fabrication of freestanding Cu nanowire array. Appl Phys Lett 2006; 88: 083103.
- Zhu Y, Li Z,Huang M. Coupled effect of sample size and grain size in polycrystalline Al nanowires. Scripta Materialia 2013; 68: 663–666.
- Diao J, Gall K, Dunn ML. Yield strength asymmetry in metal nanowires. Nano Lett 2004; 4(10): 1863-1867.
- Wu W, Brongersma SH, Hove MV, Maex K. Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions. Appl Phys Lett 2004; 84: 2838-2840.
- Klinger L, Rabkin E. Thermal stability and creep of polycrystalline nanowires. Acta Mater 2006; 54: 305-311.
- Molares MET, Balogh AG, Cornelius TW, Neumann R, Trautmann C. Fragmentation of nanowires driven by Rayleigh instability. Appl Phys Lett 2004; 85: 5337-5339.
- Philips R, Crystals, Defects and Microstructures. Cambridge University Press, 2001.
- Golovnev IF, Golovneva EI, Fomin VM. The influence of a nanocrystal size on the results of molecular-dynamics modeling. Comp Matter Sci 2006; 36: 176-179.
- Niu JJ, Zhang JY, Liu G, Zhang P, Lei SY, Zhang GJ, Sun J. Size- dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (X = Cr, Zr) multilayer films, Acta Materialia 2012; 60: 3677-3689.
- Smith WF. Principles of Materials Science and Engineering, McGraw-Hill Inc. 1996; New York, USA.
- Zhang XJ, Chen CL. Phonon dispersion in the fcc metals Ca, Sr and Yb. J Low Temp Phys 2012; 169 : 40-50.
- Tolpin KA, Bachurin VI, Yurasova VE. Features of energy dependence of NiPd sputtering for various ion irradiation angles. Nucl Instrum Methods Phys Res B 2012; 273: 76-79.
- Louail L, Maouche D, Roumili A, Hachemi A. Pressure effect on elastic constants of some transition metals. Mat Chem Phys 2005; 91: 17-20.
- Cao AJ, Wei YG. Formation of fivefold deformation twins in nanocrystalline face-centered-cubic copper based on molecular dynamics simulations. Appl Phys Lett 2006; 89: 041919.
- Fu B, Chen N, Xie Y, Ye X. Size and orientation dependent melting properties and behavior of wurtzite CdSe nanowires. Comput Mater Sci 2014; 84: 293–300.
- Mandal T, Strain induced phase transition in CdSe nanowires: Effect of size and temperature. Appl Phys Lett 2012; 101(2): 021906.
- Daw MS, Baskes MI. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett 1983; 50: 1285–1295.
- Guellil AM, Adams JB. The application of the analytic embedded atom method to bcc metals and alloys. J Mater Res 1992; 7: 639-652.
- Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B Condens Matter 1986; 33(12): 7983-7991.
- Kazanc S. The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy. Canadian Journal of Physics 2013; 91: 833-838.
- Kazanc S, Ozgen S, Adiguzel O. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B 2003; 334: 375-381.
- Jacobus K, Sehitoglu H, Balzer M. Effect of stress state on the stress-induced martensitic transformation in polycrystalline Ni-Ti alloy. Metallurgical and Materials Transactions A 1996; 27(A): 3066-3073.
- Bonny G, Castin N, Terentyev D, Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy. Model Simul Mater Sci Eng 2013; 21: 085004.
- Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering 2012; 20: 045021.
- Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering 2010; 18(1): 015012.
- Hirel P. Atomsk: A tool for manipulating and converting atomic data files. Comput Phys Commun 2015; 197: 212-219.
- Zhang Y, Li J, Hu Y, Ding S, Du F, Xia R. Mechanical properties and scaling laws of polycrystalline CuZr shape memory alloy. J Appl Phys 2021; 130: 155106.
- Koh SJA, Lee HP, Lu C, Cheng QH. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Cheng, Phys Rev B 2005; 72: 085414.
- McDowell MT, Leach AM, Gall K. Bending and tensile deformation of metallic nanowires. Model Simul Mater Sci Eng 2008; 16; 045003.
- Bhatt JC, Kholiya K. Effect of size on the elastic and thermodynamic properties of nanomaterials. Indian Journal of Pure & Applied Physics 2014; 52: 604-608.
- Schiøtz J, Tolla FDD, Jacobsen KW. Softening of nanocrystalline metals at very small grain sizes. Nature 1998; 391: 561-563.
- Li X, Hu W, Xiao S, Huang WQ. Molecular dynamics simulation of polycrystalline molybdenum nanowires under uniaxial tensile strain: Size effects. Physica E 2008; 40: 3030–3036.
- Wen YH, Zhang Y, Wang Q, Zheng JC, Zhu ZZ. Orientation-dependent mechanical properties of Au nanowires. Computational Materials Science 2010; 48: 513-519.
- Wu HA. Molecular dynamics study of the mechanism of metal nanowires at finite temperature. European Journal of Mechanics A/Solids 2006; 25: 370-377.
- Wu B. Heidelberg A, Boland JJ. Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials 2005; 4(7): 525-529.
- Hou Z, Xiao Q, Wang Z, Wang J, Liu R, Wang C. Effect of twin boundary spacing on the deformation behaviour of Au nanowire. Physica B 2020; 581: 411952.
- Lu L, Sui ML, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature. Science 2000; 287: 1463-1466.
- Hall EO. The Deformation and Ageing of Mild Steel: III Discussion and Results. Proceed Phys Soc Lond Sect B 1951; 64:747–752.
- Petch NJ. The Cleavage Strength of Polycrystals. J Iron Steel Inst 1953; 174:25–28.
- Hughes GD, Smith SD, Pande CS, Johnson HR, Armstrong RW. Hall-Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel. Scr Metall 1986; 20: 93–97.
- Jang JSC, Koch CC. The Hall–Petch relationship in nanocrystalline iron produced by ball milling. Scr Metall Mater 1990; 24: 1599–1604.
- Knapp JA, Follstaedt DM. Hall–Petch relationship in pulsed-laser deposited nickel films. J Mater Res 2004; 19: 218–227.
- Zhang L, Lu C, Tieu K. A review on atomistic simulation of grain boundary behaviors in face-centered cubic metals. Comput Mater Sci 2016; 118: 180-191.
- Zhang L, Shibuta Y, Huang X, Lu C, Liu M. Grain boundary induced deformation mechanisms in nanocrystalline Al by molecular dynamics simulation: From interatomic potential perspective. Comput Mater Sci 2019; 156: 421-433.
- Jia H, Liu X,Li Z,Sun S,Li M. The effect of grain size on the deformation mechanisms and mechanical properties of polycrystalline TiN: A EAM molecular dynamics study. Computational Materials Science 2018; 143: 189–194.
- Yip S. The strongest size. Nature 1998; 391: 532–533.
- Shan ZW, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM. Grain boundary-mediated plasticity in nanocrystalline nickel. S.X. Mao, Science 2004; 305: 654–657.
- Wang LH,Han XD, Liu P, Yue YH, Zhang Z, Ma E. In situ observation of dislocation behavior in nanometer grains. Phys Rev Lett 2010; 105: 135501.
- Wang LH, Teng J, Liu , Hirata A, Ma E, Zhang Z, Chen MW, Han XD. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat Commun 2014; 5: 4402.
Tane Büyüklüğü ve Tel Boyutunun Polikristal Ni Nano Telinin Mekanik ve Yapısal Özelliklerine Etkisinin Moleküler Dinamik Benzetimi ile İncelenmesi
Year 2025,
Volume: 20 Issue: 1, 17 - 27
Sefa Kazanç
,
Canan Aksu Canbay
Abstract
Polikristal Ni nano telinin mekanik özelliklerine tane büyüklüğü ve uzunluk-çap oranının (LDR) etkisi, 300 K sıcaklık değerinde uygulanan tek eksenli çekme deformasyonu sonucu moleküler dinamik benzetimi ile incelendi. Gömülmüş Atom Metodu (GAM) nano tel atomları üzerine etki eden kuvvetlerin belirlenmesinde kullanıldı. Deformasyon işlemi sonucu tespit edilen zor-zorlanma ilişkisinden Elastiklik modülü (E), akma dayanımı, kopma gerilmesi değerleri belirlendi. Ortak komşu analiz yöntemi (Common Neighbor Analysis-CNA) kullanılarak tespit edilen atomik konumlardan plastik deformasyon sonucu meydana gelen mikro yapısal değişimler incelendi. Tane büyüklüğü ve LDR’nin Ni nano telinin deformasyon davranışları üzerinde önemli bir etkiye sahip olduğu ve plastik şekil değişimi ve kopmaların, atomik konumların yüzey etkisi ile yeniden düzenlenmesinden kaynaklandığı belirlendi. Küçük tane boyutuna ve LDR’ye sahip nanotellerin süper plastiklik davranış sergilediği tespit edildi. Modellenen polikristal nano tel sistemde tane boyutunun, tanelerin hareket mekanizmalarını, tane sınırlarını ve tane boyutu ile akma zoru arasındaki ilişkiyi etkilediği tespit edildi. Bu ilişkiden Hall-Petch etkisi ve belirli bir kritik tane büyüklüğünden sonra ters Hall-Petch etkisi gözlemlendi.
References
- Lu W, Lieber CM. Semiconductor nanowires. J Phys Appl Phys 2006; 39(21): 387.
- Rurali R. Colloquium: Structural, electronic, and transport properties of silicon nanowires. Rev Mod Phys 2010; 82(1): 427, 2010.
- Park HS, Zimmerman JA. Modeling inelasticity and failure in gold nanowires. Physical Review B 2005; 72: 054106.
- Veerababu J, Nagesha A, Shankar V. Slip to twinning to slip transition in polycrystalline BCC-Fe: Effect of grain size. Physica B: Condensed Matter 2024; 694: 416465.
- Niu Y, Jia Y, Lv X, Zhu Y, Wang Y. Molecular dynamics simulations of polycrystalline titanium mechanical properties: Grain size effect. Materials Today Communications. 2024; 40: 109558.
- Suryavanshi AP, Yu MF. Probe-based electrochemical fabrication of freestanding Cu nanowire array. Appl Phys Lett 2006; 88: 083103.
- Zhu Y, Li Z,Huang M. Coupled effect of sample size and grain size in polycrystalline Al nanowires. Scripta Materialia 2013; 68: 663–666.
- Diao J, Gall K, Dunn ML. Yield strength asymmetry in metal nanowires. Nano Lett 2004; 4(10): 1863-1867.
- Wu W, Brongersma SH, Hove MV, Maex K. Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions. Appl Phys Lett 2004; 84: 2838-2840.
- Klinger L, Rabkin E. Thermal stability and creep of polycrystalline nanowires. Acta Mater 2006; 54: 305-311.
- Molares MET, Balogh AG, Cornelius TW, Neumann R, Trautmann C. Fragmentation of nanowires driven by Rayleigh instability. Appl Phys Lett 2004; 85: 5337-5339.
- Philips R, Crystals, Defects and Microstructures. Cambridge University Press, 2001.
- Golovnev IF, Golovneva EI, Fomin VM. The influence of a nanocrystal size on the results of molecular-dynamics modeling. Comp Matter Sci 2006; 36: 176-179.
- Niu JJ, Zhang JY, Liu G, Zhang P, Lei SY, Zhang GJ, Sun J. Size- dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (X = Cr, Zr) multilayer films, Acta Materialia 2012; 60: 3677-3689.
- Smith WF. Principles of Materials Science and Engineering, McGraw-Hill Inc. 1996; New York, USA.
- Zhang XJ, Chen CL. Phonon dispersion in the fcc metals Ca, Sr and Yb. J Low Temp Phys 2012; 169 : 40-50.
- Tolpin KA, Bachurin VI, Yurasova VE. Features of energy dependence of NiPd sputtering for various ion irradiation angles. Nucl Instrum Methods Phys Res B 2012; 273: 76-79.
- Louail L, Maouche D, Roumili A, Hachemi A. Pressure effect on elastic constants of some transition metals. Mat Chem Phys 2005; 91: 17-20.
- Cao AJ, Wei YG. Formation of fivefold deformation twins in nanocrystalline face-centered-cubic copper based on molecular dynamics simulations. Appl Phys Lett 2006; 89: 041919.
- Fu B, Chen N, Xie Y, Ye X. Size and orientation dependent melting properties and behavior of wurtzite CdSe nanowires. Comput Mater Sci 2014; 84: 293–300.
- Mandal T, Strain induced phase transition in CdSe nanowires: Effect of size and temperature. Appl Phys Lett 2012; 101(2): 021906.
- Daw MS, Baskes MI. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett 1983; 50: 1285–1295.
- Guellil AM, Adams JB. The application of the analytic embedded atom method to bcc metals and alloys. J Mater Res 1992; 7: 639-652.
- Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B Condens Matter 1986; 33(12): 7983-7991.
- Kazanc S. The effects on the lattice dynamical properties of the temperature and pressure in random NiPd alloy. Canadian Journal of Physics 2013; 91: 833-838.
- Kazanc S, Ozgen S, Adiguzel O. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy. Physica B 2003; 334: 375-381.
- Jacobus K, Sehitoglu H, Balzer M. Effect of stress state on the stress-induced martensitic transformation in polycrystalline Ni-Ti alloy. Metallurgical and Materials Transactions A 1996; 27(A): 3066-3073.
- Bonny G, Castin N, Terentyev D, Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy. Model Simul Mater Sci Eng 2013; 21: 085004.
- Stukowski A. Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering 2012; 20: 045021.
- Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering 2010; 18(1): 015012.
- Hirel P. Atomsk: A tool for manipulating and converting atomic data files. Comput Phys Commun 2015; 197: 212-219.
- Zhang Y, Li J, Hu Y, Ding S, Du F, Xia R. Mechanical properties and scaling laws of polycrystalline CuZr shape memory alloy. J Appl Phys 2021; 130: 155106.
- Koh SJA, Lee HP, Lu C, Cheng QH. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Cheng, Phys Rev B 2005; 72: 085414.
- McDowell MT, Leach AM, Gall K. Bending and tensile deformation of metallic nanowires. Model Simul Mater Sci Eng 2008; 16; 045003.
- Bhatt JC, Kholiya K. Effect of size on the elastic and thermodynamic properties of nanomaterials. Indian Journal of Pure & Applied Physics 2014; 52: 604-608.
- Schiøtz J, Tolla FDD, Jacobsen KW. Softening of nanocrystalline metals at very small grain sizes. Nature 1998; 391: 561-563.
- Li X, Hu W, Xiao S, Huang WQ. Molecular dynamics simulation of polycrystalline molybdenum nanowires under uniaxial tensile strain: Size effects. Physica E 2008; 40: 3030–3036.
- Wen YH, Zhang Y, Wang Q, Zheng JC, Zhu ZZ. Orientation-dependent mechanical properties of Au nanowires. Computational Materials Science 2010; 48: 513-519.
- Wu HA. Molecular dynamics study of the mechanism of metal nanowires at finite temperature. European Journal of Mechanics A/Solids 2006; 25: 370-377.
- Wu B. Heidelberg A, Boland JJ. Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials 2005; 4(7): 525-529.
- Hou Z, Xiao Q, Wang Z, Wang J, Liu R, Wang C. Effect of twin boundary spacing on the deformation behaviour of Au nanowire. Physica B 2020; 581: 411952.
- Lu L, Sui ML, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature. Science 2000; 287: 1463-1466.
- Hall EO. The Deformation and Ageing of Mild Steel: III Discussion and Results. Proceed Phys Soc Lond Sect B 1951; 64:747–752.
- Petch NJ. The Cleavage Strength of Polycrystals. J Iron Steel Inst 1953; 174:25–28.
- Hughes GD, Smith SD, Pande CS, Johnson HR, Armstrong RW. Hall-Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel. Scr Metall 1986; 20: 93–97.
- Jang JSC, Koch CC. The Hall–Petch relationship in nanocrystalline iron produced by ball milling. Scr Metall Mater 1990; 24: 1599–1604.
- Knapp JA, Follstaedt DM. Hall–Petch relationship in pulsed-laser deposited nickel films. J Mater Res 2004; 19: 218–227.
- Zhang L, Lu C, Tieu K. A review on atomistic simulation of grain boundary behaviors in face-centered cubic metals. Comput Mater Sci 2016; 118: 180-191.
- Zhang L, Shibuta Y, Huang X, Lu C, Liu M. Grain boundary induced deformation mechanisms in nanocrystalline Al by molecular dynamics simulation: From interatomic potential perspective. Comput Mater Sci 2019; 156: 421-433.
- Jia H, Liu X,Li Z,Sun S,Li M. The effect of grain size on the deformation mechanisms and mechanical properties of polycrystalline TiN: A EAM molecular dynamics study. Computational Materials Science 2018; 143: 189–194.
- Yip S. The strongest size. Nature 1998; 391: 532–533.
- Shan ZW, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM. Grain boundary-mediated plasticity in nanocrystalline nickel. S.X. Mao, Science 2004; 305: 654–657.
- Wang LH,Han XD, Liu P, Yue YH, Zhang Z, Ma E. In situ observation of dislocation behavior in nanometer grains. Phys Rev Lett 2010; 105: 135501.
- Wang LH, Teng J, Liu , Hirata A, Ma E, Zhang Z, Chen MW, Han XD. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat Commun 2014; 5: 4402.