Research Article
BibTex RIS Cite

PCG-Generated Randomness: A NIST Analysis of 100-Million Bits

Year 2025, Volume: 20 Issue: 1, 55 - 61, 27.03.2025
https://doi.org/10.55525/tjst.1528213

Abstract

The generation of random numbers is crucial for various applications, including cryptography, simulation, sampling, and statistical analysis. Cryptography utilizes random numbers to secure communication through the generation of encryption keys, thereby safeguarding sensitive information from unauthorized access. This study aims to evaluate the randomness and suitability of the Permuted Congruential Generator (PCG) algorithm for cryptography applications, through testing its generated random numbers using the National Institute of Standards and Technology (NIST) statistical tests. A novel method is proposed for generating 100 million bits using the PCG algorithm. The generated random numbers are then subjected to NIST testing. The results indicate that the PCG-generated random numbers pass most relevant statistical tests and comply with the standards of randomness necessary for cryptography. In conclusion, the PCG algorithm is demonstrated to be a robust, dependable, and appropriate random number generator for cryptography and other applications requiring random numbers.

References

  • Akashi N, Nakajima K, Shibayama M, Kuniyoshi Y. A mechanical true random number generator. New J Phys 2022; 24(1): 249-252.
  • Basharat I, Azam F, Muzaffar AW. Database security and encryption: A survey study. Int J Comput Appl 2012; 47(12): 28-34.
  • Bouillaguet C, Martinez F, Sauvage J. Practical seed-recovery for the PCG pseudo-random number generator. IACR Trans Symmetric Cryptol 2020; 2020(3): 175-196.
  • Dong L, Chen K. Cryptographic protocol. Security analysis based on trusted freshness. Springer, 2012.
  • Johnston D. Random number generators—principles and practices. In Random Number Generators—Principles and Practices. De Gruyter Press, 2018.
  • Kohlbrenner P, Gaj K. An embedded true random number generator for FPGAs. Proc ACM SIGDA Int Symp Field Program Gate Arrays 2004; 71–78.
  • Naik RB, Singh U. A review on applications of chaotic maps in pseudo-random number generators and encryption. Ann Data Sci 2022; 1-26.
  • O’Neill ME. PCG: A family of simple fast space-efficient statistically good algorithms for random number generation. ACM Trans Math Softw, 2014.
  • Paar C, Pelzl J. Understanding cryptography: a textbook for students and practitioners. Springer Sci Bus Media, 2009.
  • Panda M. Performance analysis of encryption algorithms for security. In Proc Int Conf Signal Process Commun Power Embed Syst (SCOPES). IEEE, 2016; 278-284.
  • Pareschi F, Rovatti R, Setti G. Second-level NIST randomness tests for improving test reliability. In Proc IEEE Int Symp Circuits Syst (ISCAS) 2007; 1437-1440.
  • Patnala TR, Jayanthi D, Majji S, Valleti M, Kothapalli S, Karanam SR. A modernistic way for key generation for highly secure data transfer in ASIC design flow. In Proc Int Conf Adv Comput Commun Syst (ICACCS). IEEE, 2020; 892-897.
  • Ponuma R, Amutha R. Compressive sensing based image compression-encryption using novel 1D-chaotic map. Multimed Tools Appl 2018; 77: 19209-19234.
  • Sharma S, Gupta Y. Study on cryptography and techniques. Int J Sci Res Comput Sci Eng Inf Technol 2017; 2(1): 249–252.
  • Soto J. Statistical testing of random number generators. In Proc Natl Inf Syst Secur Conf 1999; 12.
  • Thambiraja E, Ramesh G, Umarani DR. A survey on various most common encryption techniques. Int J Adv Res Comput Sci Softw Eng 2012; 2(7).
  • Zaman JKMS, Ghosh R. Review on fifteen statistical tests proposed by NIST. J Theor Phys Cryptogr 2012; 1: 18-31.
  • Zaru A, Khan M. General summary of cryptography. J Eng Res Appl 2018; 8(02): 68-71.
  • Zhu S, Ma Y, Lin J, Zhuang J, Jing J. More powerful and reliable second-level statistical randomness tests for NIST SP 800-22. In Adv Cryptol – ASIACRYPT. Springer 2016; 307-329.

PCG Tarafından Oluşturulan Rastgelelik: 100 Milyon Bitlik Bir NIST Analizi

Year 2025, Volume: 20 Issue: 1, 55 - 61, 27.03.2025
https://doi.org/10.55525/tjst.1528213

Abstract

Rastgele sayıların üretilmesi kriptografi, simülasyon, örnekleme ve istatistiksel analiz gibi çeşitli uygulamalar için çok önemlidir. Kriptografi, şifreleme anahtarlarının oluşturulması yoluyla iletişimi güvence altına almak için rastgele sayıları kullanır ve böylece hassas bilgileri yetkisiz erişime karşı korur. Bu çalışma, Permuted Congruential Generator (PCG) algoritmasının kriptografi uygulamaları için rastgeleliğini ve uygunluğunu, üretilen rastgele sayıları Ulusal Standartlar ve Teknoloji Enstitüsü (NIST) istatistiksel testlerini kullanarak test ederek değerlendirmeyi amaçlamaktadır. PCG algoritmasını kullanarak 100 milyon bit üretmek için yeni bir yöntem önerilmiştir. Üretilen rastgele sayılar daha sonra NIST testine tabi tutulmuştur. Sonuçlar, PCG tarafından üretilen rastgele sayıların ilgili istatistiksel testlerin çoğunu geçtiğini ve kriptografi için gerekli rastgelelik standartlarına uygun olduğunu göstermektedir. Sonuç olarak, PCG algoritmasının kriptografi ve rastgele sayı gerektiren diğer uygulamalar için sağlam, güvenilir ve uygun bir rastgele sayı üreteci olduğu gösterilmiştir.

References

  • Akashi N, Nakajima K, Shibayama M, Kuniyoshi Y. A mechanical true random number generator. New J Phys 2022; 24(1): 249-252.
  • Basharat I, Azam F, Muzaffar AW. Database security and encryption: A survey study. Int J Comput Appl 2012; 47(12): 28-34.
  • Bouillaguet C, Martinez F, Sauvage J. Practical seed-recovery for the PCG pseudo-random number generator. IACR Trans Symmetric Cryptol 2020; 2020(3): 175-196.
  • Dong L, Chen K. Cryptographic protocol. Security analysis based on trusted freshness. Springer, 2012.
  • Johnston D. Random number generators—principles and practices. In Random Number Generators—Principles and Practices. De Gruyter Press, 2018.
  • Kohlbrenner P, Gaj K. An embedded true random number generator for FPGAs. Proc ACM SIGDA Int Symp Field Program Gate Arrays 2004; 71–78.
  • Naik RB, Singh U. A review on applications of chaotic maps in pseudo-random number generators and encryption. Ann Data Sci 2022; 1-26.
  • O’Neill ME. PCG: A family of simple fast space-efficient statistically good algorithms for random number generation. ACM Trans Math Softw, 2014.
  • Paar C, Pelzl J. Understanding cryptography: a textbook for students and practitioners. Springer Sci Bus Media, 2009.
  • Panda M. Performance analysis of encryption algorithms for security. In Proc Int Conf Signal Process Commun Power Embed Syst (SCOPES). IEEE, 2016; 278-284.
  • Pareschi F, Rovatti R, Setti G. Second-level NIST randomness tests for improving test reliability. In Proc IEEE Int Symp Circuits Syst (ISCAS) 2007; 1437-1440.
  • Patnala TR, Jayanthi D, Majji S, Valleti M, Kothapalli S, Karanam SR. A modernistic way for key generation for highly secure data transfer in ASIC design flow. In Proc Int Conf Adv Comput Commun Syst (ICACCS). IEEE, 2020; 892-897.
  • Ponuma R, Amutha R. Compressive sensing based image compression-encryption using novel 1D-chaotic map. Multimed Tools Appl 2018; 77: 19209-19234.
  • Sharma S, Gupta Y. Study on cryptography and techniques. Int J Sci Res Comput Sci Eng Inf Technol 2017; 2(1): 249–252.
  • Soto J. Statistical testing of random number generators. In Proc Natl Inf Syst Secur Conf 1999; 12.
  • Thambiraja E, Ramesh G, Umarani DR. A survey on various most common encryption techniques. Int J Adv Res Comput Sci Softw Eng 2012; 2(7).
  • Zaman JKMS, Ghosh R. Review on fifteen statistical tests proposed by NIST. J Theor Phys Cryptogr 2012; 1: 18-31.
  • Zaru A, Khan M. General summary of cryptography. J Eng Res Appl 2018; 8(02): 68-71.
  • Zhu S, Ma Y, Lin J, Zhuang J, Jing J. More powerful and reliable second-level statistical randomness tests for NIST SP 800-22. In Adv Cryptol – ASIACRYPT. Springer 2016; 307-329.
There are 19 citations in total.

Details

Primary Language English
Subjects Information Security and Cryptology
Journal Section TJST
Authors

Zülfiye Beyza Metin 0000-0003-4376-7319

Fatih Özkaynak 0000-0003-1292-8490

Publication Date March 27, 2025
Submission Date August 5, 2024
Acceptance Date November 20, 2024
Published in Issue Year 2025 Volume: 20 Issue: 1

Cite

APA Metin, Z. B., & Özkaynak, F. (2025). PCG-Generated Randomness: A NIST Analysis of 100-Million Bits. Turkish Journal of Science and Technology, 20(1), 55-61. https://doi.org/10.55525/tjst.1528213
AMA Metin ZB, Özkaynak F. PCG-Generated Randomness: A NIST Analysis of 100-Million Bits. TJST. March 2025;20(1):55-61. doi:10.55525/tjst.1528213
Chicago Metin, Zülfiye Beyza, and Fatih Özkaynak. “PCG-Generated Randomness: A NIST Analysis of 100-Million Bits”. Turkish Journal of Science and Technology 20, no. 1 (March 2025): 55-61. https://doi.org/10.55525/tjst.1528213.
EndNote Metin ZB, Özkaynak F (March 1, 2025) PCG-Generated Randomness: A NIST Analysis of 100-Million Bits. Turkish Journal of Science and Technology 20 1 55–61.
IEEE Z. B. Metin and F. Özkaynak, “PCG-Generated Randomness: A NIST Analysis of 100-Million Bits”, TJST, vol. 20, no. 1, pp. 55–61, 2025, doi: 10.55525/tjst.1528213.
ISNAD Metin, Zülfiye Beyza - Özkaynak, Fatih. “PCG-Generated Randomness: A NIST Analysis of 100-Million Bits”. Turkish Journal of Science and Technology 20/1 (March 2025), 55-61. https://doi.org/10.55525/tjst.1528213.
JAMA Metin ZB, Özkaynak F. PCG-Generated Randomness: A NIST Analysis of 100-Million Bits. TJST. 2025;20:55–61.
MLA Metin, Zülfiye Beyza and Fatih Özkaynak. “PCG-Generated Randomness: A NIST Analysis of 100-Million Bits”. Turkish Journal of Science and Technology, vol. 20, no. 1, 2025, pp. 55-61, doi:10.55525/tjst.1528213.
Vancouver Metin ZB, Özkaynak F. PCG-Generated Randomness: A NIST Analysis of 100-Million Bits. TJST. 2025;20(1):55-61.