Research Article
BibTex RIS Cite

A Novel Two-Dimensional Wind Speed and Direction Measurement Method Based on NTC

Year 2025, Volume: 20 Issue: 1, 225 - 234, 27.03.2025
https://doi.org/10.55525/tjst.1557500

Abstract

Traditional wind sensors, such as cup, hot wire, ultrasonic, and laser Doppler anemometers, often have mechanical parts that limit sensitivity, accuracy, and durability, unlike thermal flow sensors, which detect the wind by measuring the temperature variations using a heater. In addition, the methods reported in the literature have different advantages and disadvantages. In this study, different thermal flow sensor designs reported in the literature are examined and a new method based on the 2-dimensional NTC thermistor is proposed. Simulation results of the proposed method are presented. According to the results actual and calculated wind speed measurements well matched and the maximum wind speed error observed is less than %3. In addition, a simple testbed is presented for wind direction measurement.

References

  • Aleksic SO, Mitrovic NS, Nikolic Z, Lukovic MD, Obradovic NN. Lukovic S. G. Three-Axis’ Heat Loss Anemometer Comprising Thick-Film Segmented Thermistors. IEEE Sens J 2019; 19 (22): 10228-10235.
  • Gutarra JS, Gastelo-Roque JA, Sulluchuco J. A cup anemometer using 3D additive manufacturing. 2020 IEEE 27th Int. Conf. Electron Electr Eng Comput (INTERCON); 03-05 September 2020; Lima, Peru.
  • Perez del Valle, M, Urbano Castelan JA, Matsumoto Y, Cortes Mateos R. Low Cost Ultrasonic Anemometer. 2007 4th Int Conf Electr Electron Eng (ICEEE); 05-07 September 2007; Mexico City, Mexico. 213-216.
  • Le Duff A, Plantier G, Gazengel B. Real-Time Particle Detection and Velocity Measurement by Means of Laser Doppler Velocimetry. 2005 IEEE Instrum Meas Technol Conf (IMTC); 16-19 May 2005; Ottawa, ON, Canada. 2222-2225.
  • Chen J, Liu C. Development and characterization of surface micromachined, out-of-plane hot-wire anemometer. J Microelectromech Syst 2003; 12 (6): 979-988.
  • Wang, S, Yi Z, Qin M, Huang QA. Temperature effects of a ceramic mems thermal wind sensor based on a temperature-balanced mode. IEEE Sens J 2019; 19 (17): 7254–7260.
  • Zhu Y, Qin M, Huang J, Yi Z, Huang Q. Sensitivity Improvement of a 2D MEMS Thermal Wind Sensor for Low-Power Applications. IEEE Sens J 2016; 16 (11): 4300-4308.
  • Makinwa KAA, Huijsing JH. A wind-sensor interface using thermal sigma-delta modulation techniques. Sens Actuators A Phys 2001; 92 (1-3): 280-285.
  • Sosna C, Buchner R, Lang W. A temperature compensation circuit for thermal flow sensors operated in constant-temperature-difference mode. IEEE Trans Instrum Meas 2010; 59 (6), 1715–1721.
  • Que RY, Zhu R, Que QZ, Cao Z. Temperature compensation for thermal anemometers using temperature sensors independent of flow sensors. Meas Sci Technol 2011; 22.
  • Nguyen NT, Kiehnscherf R. Low-cost silicon sensors for mass flow measurement of liquids and gases. Sens Actuators A Phys 1995; 49 (1-2): 17-20.
  • Gao S, Yi Z, Ye Y, Qin M, Huang QA. Temperature Effect and Its Compensation of a Micromachined 2-D Anemometer. IEEE Sens J 2019; 19 (14): 5454–5459.
  • Huang L. Micromachined Thermal Time-of-Flight Flow Sensors and Their Applications. Micromachines (Basel). 2022; 13 (10): 1729.
  • Yao Y, Chen C, Wu X, Huang L. MEMS Thermal Time-of-Flight Flow Meter. 15th Flow Meas Conf (FLOMEKO); 13-15 October 2010; Taipei, Taiwan.
  • Matova SP, Makinwa KAA, Huijsing JH. Compensation of Packaging Asymmetry in a 2-D Wind Sensor. IEEE SENSORS 2002; 12-14 June 2002; Orlando, FL, USA. 1256-1259.
  • Nam T, Kim S, Park S. The temperature compensation of a thermal flow sensor by changing the slope and the ratio of resistances. Sens Actuators A Phys 2004; 114 (2-3): 212-218.
  • Makinwa KAA, Huijsing JH. A wind sensor with an integrated low-offset instrumentation amplifier. 2001 8th IEEE Int Conf Electron., Circuits Syst (ICECS); 02-05 September 2001; Malta, Malta. 1505-1508.
  • Van Putten AFP, Van Putten MJAM, Van Putten MHPM. Silicon thermal anemometry: developments and applications. Meas Sci Technol 1996; 7: 1360-1377.
  • Yi Z, Ye Y, Qin M, Huang Q. Modeling of Packaged MEMS Thermal Wind Sensor Operating on CP Mode. IEEE Trans Electron Devices 2019; 66 (5): 2375-2381.
  • Kim S, Nam T, Park S. Measurement of flow direction and velocity using a micromachined flow sensor. Sens Actuators A Phys 2004; 114 (2-3): 312-318.
  • Que RY, Zhu R, Wei QZ, Cao Z. Temperature compensation for thermal anemometers using temperature sensors independent of flow sensors. Meas Sci Technol 2011; 22.
  • Gao S, Yi Z, Ye Y, Qin M, Huang QA. Configuration of a Self-Heated Double Wheatstone Bridge for 2-D Wind Sensors. J Microelectromech Syst 2018; 28 (1): 125-130.
  • Dong Z, Huang Q, Qin M. Thermal Asymmetry Compensation of a Wind Sensor Fabricated on Ceramic Substrate. IEEE SENSORS 2010; 01-04 November 2010; Waikoloa, HI, USA. 595-599.
  • Ye Y, Yi Z, Gao S, Qin M, Huang Q. Octagon-Shaped 2-D Micromachined Thermal Wind Sensor for High-Accurate Applications. J Microelectromech Syst 2018; 27 (4): 739-747.
  • Chen B, Zhu Y, Qin M, Huang Q. Effects of Ambient Humidity on a Micromachined Silicon Thermal Wind Sensor. J Microelectromech Syst 2014; 23 (2): 253-255.
  • Dong Z, Chen J, Qin Y, Qin M, Huang Q. Fabrication of a Micromachined Two-Dimensional Wind Sensor by Au–Au Wafer Bonding Technology. J. Microelectromech. Syst 2012; 21 (2): 467-475.
  • Fritsch S, Sarrias J, Brieu M, Couderc JJ, Baudour JL, Snoeck E, Rousset A. Correlation between the structure, the microstructure and the electrical properties of nickel manganite negative temperature coefficient (NTC) thermistors. Solid State Ion 1998; 109 (3-4): 229-237.
  • Aleksic OS, Maric VD, Zivanov LD, Menicanin AB, A Novel Approach to Modeling and Simulation of NTC Thick-Film Segmented Thermistors for Sensor Applications. IEEE Sens J 2007; 7 (10): 1420-1428.
  • Menicanin AB, Aleksic OS, Nikolic MV, Savic SM, Radojcic BM. Novel Uniaxial Anemometer Containing NTC Thick Film Segmented Thermistors. 2008 26th Int Conf Microelectron (MIEL); 11-14 May 2008; Nis, Serbia and Montenegro.
  • Aleksic O, Radojcic B, RamovicR. Electrode Effect on NTC Planar Thermistor Volume Resistivity. 2006 25th Int Conf Microelectron (MIEL); 14-17 May 2006; Belgrade, Serbia.

NTC Tabanlı Yeni Bir İki-Boyutlu Rüzgar Hızı ve Yönü Ölçüm Yöntemi

Year 2025, Volume: 20 Issue: 1, 225 - 234, 27.03.2025
https://doi.org/10.55525/tjst.1557500

Abstract

Geleneksel rüzgâr sensörleri, bir ısıtıcı kullanarak sıcaklık değişimlerini ölçerek rüzgârı algılayan termal akış sensörlerinin aksine, kupalı, ultrasonik ve lazer Doppler anemometre gibi, genellikle hassasiyet, doğruluk ve dayanıklılığı sınırlayan mekanik parçalara sahiptir. Bunların yanında, literatürde rapor edilen yöntemlerin farklı avantajları ve dezavantajları bulunmaktadır. Bu çalışmada ise, literatürde rapor edilen farklı termal akış sensörü tasarımları incelenmiş ve 2 boyutlu NTC sensörünü temel alan yeni bir yöntem önerilmiştir. Önerilen yöntemin simülasyon sonuçları sunulmuştur. Sonuçlara göre gerçek ve hesaplanan rüzgâr hızı ölçümleri iyi bir şekilde eşleşmiştir ve gözlenen maksimum rüzgar hızı hatası %3’ten azdır. Ek olarak rüzgâr yönünün tespiti için basit bir düzenek de sunulmuştur.

References

  • Aleksic SO, Mitrovic NS, Nikolic Z, Lukovic MD, Obradovic NN. Lukovic S. G. Three-Axis’ Heat Loss Anemometer Comprising Thick-Film Segmented Thermistors. IEEE Sens J 2019; 19 (22): 10228-10235.
  • Gutarra JS, Gastelo-Roque JA, Sulluchuco J. A cup anemometer using 3D additive manufacturing. 2020 IEEE 27th Int. Conf. Electron Electr Eng Comput (INTERCON); 03-05 September 2020; Lima, Peru.
  • Perez del Valle, M, Urbano Castelan JA, Matsumoto Y, Cortes Mateos R. Low Cost Ultrasonic Anemometer. 2007 4th Int Conf Electr Electron Eng (ICEEE); 05-07 September 2007; Mexico City, Mexico. 213-216.
  • Le Duff A, Plantier G, Gazengel B. Real-Time Particle Detection and Velocity Measurement by Means of Laser Doppler Velocimetry. 2005 IEEE Instrum Meas Technol Conf (IMTC); 16-19 May 2005; Ottawa, ON, Canada. 2222-2225.
  • Chen J, Liu C. Development and characterization of surface micromachined, out-of-plane hot-wire anemometer. J Microelectromech Syst 2003; 12 (6): 979-988.
  • Wang, S, Yi Z, Qin M, Huang QA. Temperature effects of a ceramic mems thermal wind sensor based on a temperature-balanced mode. IEEE Sens J 2019; 19 (17): 7254–7260.
  • Zhu Y, Qin M, Huang J, Yi Z, Huang Q. Sensitivity Improvement of a 2D MEMS Thermal Wind Sensor for Low-Power Applications. IEEE Sens J 2016; 16 (11): 4300-4308.
  • Makinwa KAA, Huijsing JH. A wind-sensor interface using thermal sigma-delta modulation techniques. Sens Actuators A Phys 2001; 92 (1-3): 280-285.
  • Sosna C, Buchner R, Lang W. A temperature compensation circuit for thermal flow sensors operated in constant-temperature-difference mode. IEEE Trans Instrum Meas 2010; 59 (6), 1715–1721.
  • Que RY, Zhu R, Que QZ, Cao Z. Temperature compensation for thermal anemometers using temperature sensors independent of flow sensors. Meas Sci Technol 2011; 22.
  • Nguyen NT, Kiehnscherf R. Low-cost silicon sensors for mass flow measurement of liquids and gases. Sens Actuators A Phys 1995; 49 (1-2): 17-20.
  • Gao S, Yi Z, Ye Y, Qin M, Huang QA. Temperature Effect and Its Compensation of a Micromachined 2-D Anemometer. IEEE Sens J 2019; 19 (14): 5454–5459.
  • Huang L. Micromachined Thermal Time-of-Flight Flow Sensors and Their Applications. Micromachines (Basel). 2022; 13 (10): 1729.
  • Yao Y, Chen C, Wu X, Huang L. MEMS Thermal Time-of-Flight Flow Meter. 15th Flow Meas Conf (FLOMEKO); 13-15 October 2010; Taipei, Taiwan.
  • Matova SP, Makinwa KAA, Huijsing JH. Compensation of Packaging Asymmetry in a 2-D Wind Sensor. IEEE SENSORS 2002; 12-14 June 2002; Orlando, FL, USA. 1256-1259.
  • Nam T, Kim S, Park S. The temperature compensation of a thermal flow sensor by changing the slope and the ratio of resistances. Sens Actuators A Phys 2004; 114 (2-3): 212-218.
  • Makinwa KAA, Huijsing JH. A wind sensor with an integrated low-offset instrumentation amplifier. 2001 8th IEEE Int Conf Electron., Circuits Syst (ICECS); 02-05 September 2001; Malta, Malta. 1505-1508.
  • Van Putten AFP, Van Putten MJAM, Van Putten MHPM. Silicon thermal anemometry: developments and applications. Meas Sci Technol 1996; 7: 1360-1377.
  • Yi Z, Ye Y, Qin M, Huang Q. Modeling of Packaged MEMS Thermal Wind Sensor Operating on CP Mode. IEEE Trans Electron Devices 2019; 66 (5): 2375-2381.
  • Kim S, Nam T, Park S. Measurement of flow direction and velocity using a micromachined flow sensor. Sens Actuators A Phys 2004; 114 (2-3): 312-318.
  • Que RY, Zhu R, Wei QZ, Cao Z. Temperature compensation for thermal anemometers using temperature sensors independent of flow sensors. Meas Sci Technol 2011; 22.
  • Gao S, Yi Z, Ye Y, Qin M, Huang QA. Configuration of a Self-Heated Double Wheatstone Bridge for 2-D Wind Sensors. J Microelectromech Syst 2018; 28 (1): 125-130.
  • Dong Z, Huang Q, Qin M. Thermal Asymmetry Compensation of a Wind Sensor Fabricated on Ceramic Substrate. IEEE SENSORS 2010; 01-04 November 2010; Waikoloa, HI, USA. 595-599.
  • Ye Y, Yi Z, Gao S, Qin M, Huang Q. Octagon-Shaped 2-D Micromachined Thermal Wind Sensor for High-Accurate Applications. J Microelectromech Syst 2018; 27 (4): 739-747.
  • Chen B, Zhu Y, Qin M, Huang Q. Effects of Ambient Humidity on a Micromachined Silicon Thermal Wind Sensor. J Microelectromech Syst 2014; 23 (2): 253-255.
  • Dong Z, Chen J, Qin Y, Qin M, Huang Q. Fabrication of a Micromachined Two-Dimensional Wind Sensor by Au–Au Wafer Bonding Technology. J. Microelectromech. Syst 2012; 21 (2): 467-475.
  • Fritsch S, Sarrias J, Brieu M, Couderc JJ, Baudour JL, Snoeck E, Rousset A. Correlation between the structure, the microstructure and the electrical properties of nickel manganite negative temperature coefficient (NTC) thermistors. Solid State Ion 1998; 109 (3-4): 229-237.
  • Aleksic OS, Maric VD, Zivanov LD, Menicanin AB, A Novel Approach to Modeling and Simulation of NTC Thick-Film Segmented Thermistors for Sensor Applications. IEEE Sens J 2007; 7 (10): 1420-1428.
  • Menicanin AB, Aleksic OS, Nikolic MV, Savic SM, Radojcic BM. Novel Uniaxial Anemometer Containing NTC Thick Film Segmented Thermistors. 2008 26th Int Conf Microelectron (MIEL); 11-14 May 2008; Nis, Serbia and Montenegro.
  • Aleksic O, Radojcic B, RamovicR. Electrode Effect on NTC Planar Thermistor Volume Resistivity. 2006 25th Int Conf Microelectron (MIEL); 14-17 May 2006; Belgrade, Serbia.
There are 30 citations in total.

Details

Primary Language English
Subjects Electronics, Electronic Sensors
Journal Section TJST
Authors

Noura Soukar 0000-0003-3876-4551

Ayhan Yazgan 0000-0003-2209-2973

Publication Date March 27, 2025
Submission Date September 28, 2024
Acceptance Date March 12, 2025
Published in Issue Year 2025 Volume: 20 Issue: 1

Cite

APA Soukar, N., & Yazgan, A. (2025). A Novel Two-Dimensional Wind Speed and Direction Measurement Method Based on NTC. Turkish Journal of Science and Technology, 20(1), 225-234. https://doi.org/10.55525/tjst.1557500
AMA Soukar N, Yazgan A. A Novel Two-Dimensional Wind Speed and Direction Measurement Method Based on NTC. TJST. March 2025;20(1):225-234. doi:10.55525/tjst.1557500
Chicago Soukar, Noura, and Ayhan Yazgan. “A Novel Two-Dimensional Wind Speed and Direction Measurement Method Based on NTC”. Turkish Journal of Science and Technology 20, no. 1 (March 2025): 225-34. https://doi.org/10.55525/tjst.1557500.
EndNote Soukar N, Yazgan A (March 1, 2025) A Novel Two-Dimensional Wind Speed and Direction Measurement Method Based on NTC. Turkish Journal of Science and Technology 20 1 225–234.
IEEE N. Soukar and A. Yazgan, “A Novel Two-Dimensional Wind Speed and Direction Measurement Method Based on NTC”, TJST, vol. 20, no. 1, pp. 225–234, 2025, doi: 10.55525/tjst.1557500.
ISNAD Soukar, Noura - Yazgan, Ayhan. “A Novel Two-Dimensional Wind Speed and Direction Measurement Method Based on NTC”. Turkish Journal of Science and Technology 20/1 (March 2025), 225-234. https://doi.org/10.55525/tjst.1557500.
JAMA Soukar N, Yazgan A. A Novel Two-Dimensional Wind Speed and Direction Measurement Method Based on NTC. TJST. 2025;20:225–234.
MLA Soukar, Noura and Ayhan Yazgan. “A Novel Two-Dimensional Wind Speed and Direction Measurement Method Based on NTC”. Turkish Journal of Science and Technology, vol. 20, no. 1, 2025, pp. 225-34, doi:10.55525/tjst.1557500.
Vancouver Soukar N, Yazgan A. A Novel Two-Dimensional Wind Speed and Direction Measurement Method Based on NTC. TJST. 2025;20(1):225-34.