Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Climate Change and Air Pollution on Soil Moisture: The Case of Türkiye

Yıl 2024, Cilt: 3 Sayı: 2, 135 - 152, 25.11.2024

Öz

The effect of climatic variables on soil moisture is quite high. In this study, the soil moisture status in Turkey has been analyzed by using satellite data between 2016 and 2022 for Land Surface Temperature (LST), surface pressure (PS) and precipitation variables. The effects of temperature changes, surface pressure and precipitation on soil moisture and how these interactions differ in different regions of Turkey are analyzed. Surface soil moisture (SSM) was highly correlated with rainfall (R 0.74). There was a high correlation between SSM and LST (R 0.74). Subsurface soil moisture (SUSM) was highly correlated with precipitation (R 0.73). There was a high correlation between SUSM and LST (R 0.74). Greenhouse gas emission data were taken from the Turk Stat data portal and the relationship between soil moisture was examined. A high level of correlation was observed between SSM and SUSM, f gases (R 0.97, R 0.96). This study can be considered as an important step in understanding the effects of Turkey's climatic variables on soil moisture. The findings emphasize that soil moisture is important for sustainable agriculture and environmental factors and provide an in-depth understanding of how climatic variables affect it. Such analyses can provide strategic information in areas such as agricultural planning, water resources management and environmental sustainability, and contribute to a more robust basis for future decisions.

Kaynakça

  • M. Piles, D. Entekhabi, and A. Camps, “A change detection algorithm for retrieving high-resolution soil moisture from SMAP radar and radiometer observations”, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 12, pp. 4125 – 4131, 2009.
  • E. G. Njoku and D. Entekhabi, “Passive microwave remote sensing of soil moisture,” J. Hydrol., vol. 184, no. 1/2, pp. 101–129, 1996.
  • T. J. Schmugge, W. P. Kustas, J. C. Ritchie, T. J. Jackson, and A. Rango, “Remote sensing in hydrology”, Adv. Water Resour., vol. 25, no. 812, pp. 1367–1385, 2002.
  • P. C. Dubois, J. J. van Zyl, and E. T. Engman, “Measuring soil moisture with imaging radars”, IEEE Trans. Geosci. Remote. Sens., vol. 33, no. 4, pp. 915–926, 1995.
  • J. C. Shi, J. Wang, A. Y. Hsu, P. E. O’Neill, and E. T. Engman, “Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data”, IEEE Trans. Geosci. Remote Sens., vol. 35, no. 5, pp. 1254–1266, 1997.
  • T. J. Jackson, T. J. Schmugge, and E. T. Engman, “Remote sensing applications to hydrology: Soil moisture”, Hydrol. Sci. J.—J. Des. Sci. Hydrol., vol. 41, no. 4, pp. 517–530, 1996.
  • Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Nat. Res. Council, Washington, DC, 2007.
  • D. Entekhabi, et al., “An Earth system pathfinder for global mapping of soil moisture and land freeze/thaw: The Hydrosphere State (HYDROS) Mission Concept”, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 10, pp. 2184– 2195, 2004.
  • X. Wang, S. Jian, L. Gamage, J. L. “Effect of nitrogen fertilization on central tendency and spatial heterogeneity of soil moisture, pH and dissolved organic carbon and nitrogen in two bioenergy croplands “, Journal of Plant Nutrition and Soil Science, vol. 185, pp.343, 2022.
  • S. Manzoni, J. P. Schimel, & A. Porporato, “Responses of soil microbial communities to water stress: results from a meta-analysis”, Ecology vol. 93, pp. 930–938, 2012.
  • P. D’Odorico, F. Laio, A. Porporato, & I. Rodriguez-Iturbe, “Hydrologic controls on soil carbon and nitrogen cycles. II. A case study”, Adv. Water Resour. vol. 26, pp. 59–70, 2003.
  • G. Botter, F. Peratoner, A. Porporato, I. Rodriguez-Iturbe, & A. Rinaldo, “Signatures of large-scale soil moisture dynamics on streamflow statistics across US climate regimes”, Wat. Resour. Res. 43, W11413, 2007.
  • C. Rosenzweig, F. N. Tubiello, R. Goldberg, E. Mills, & J. Bloomfield, “Increased crop damage in the US from excess precipitation under climate change”, Glob. Environ. Change vol. 12, pp. 197–202, 2002.
  • F. Fécan, B. Marticorena, & G. Bergametti, “Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas”, Ann. Geophys. vol. 17, pp. 149–157, 1999.
  • A. Bomblies, & E. A. B. Eltahir, “Assessment of the impact of climate shifts on malaria transmission in the Sahel”, EcoHealth 6, 426–437, 2010.
  • M. Hirschi, B. Mueller, W. Dorigo, & S. I. Seneviratne, “Using remotely sensed soil moisture for land–atmosphere coupling diagnostics: the role of surface vs. root-zone soil moisture variability”, Remote Sens. Environ. vol. 154, pp. 246–252, 2014.
  • J. Qiu, W. T. Crow, & G. S. Nearing, “The impact of vertical measurement depth on the information content of soil moisture for latent heat flux estimation”, J. Hydrometeorol. vol. 19, pp. 2419–2430, 2016.
  • D. Entekhabi, I. Rodriguez-Iturbe, & R. L. Bras, “Variability in largescale water balance with land surface-atmosphere interaction”, J. Clim. vol. 5, pp. 798–813, 1992.
  • L. Tsang, T. Jackson, “Satellite remote sensing missions for monitoring water, carbon, and global climate change”, Proc. IEEE, vol.98, no. 5, pp. 645–648, 2010.
  • M.F. McCabe, et al. “The future of Earth observation in hydrology”, Hydrol. Earth Syst. Sci., vol. 21, pp. 3879–3914, 2017.
  • I.E. Mladenova, et al. “Remote monitoring of soil moisture using passive microwave-based techniques—Theoretical basis and overview of selected algorithms for AMSR-E”, Remote Sens. Environ., vol. 144, pp. 197–213, 2014.
  • Z. Xin, H. N. Niu, Z. Raghavan, V. X. Song, “Soil moisture retrieval in farmland using C-band SAR and optical data”, Spat. Inf. Res. vol. 25, pp. 431–438, 2017.
  • R. Eswar, N.N. Das, C. Poulsen, A. Behrangi, J. Swigart, M. Svoboda, D. Entekhabi, S. Yueh, B. Doorn, J. Entin, “SMAP soil moisture change as an indicator of drought conditions”, Remote Sens., vol. 10, p. 788, 2018.
  • E. M. Blyth, C. C. Daamen, “The accuracy of simple soil water models in climate forecasting”, Hydrol. Earth Syst. Sci., vol. 1, pp. 241–248, 1997.
  • R. Chakraborty, R. Rahmoune, P. Ferrazzoli, “Use of passive microwave signatures to detect and monitor flooding events in Sundarban Delta”, in Proc. IGARSS, 2011, pp. 3066–3069.
  • L. L. Bourgeau-Chavez, E. S. Kasischke, M. D. Rutherford, “Evaluation of ERS SAR data for prediction of fire danger in a Boreal region”, Int. J. Wildland Fire, vol. 9, pp. 183–194, 1999.
  • W. Ni-Meister, P. R. Houser, and J. P. Walker, “Soil moisture initialization for climate prediction: Assimilation of scanning multifrequency microwave radiometer soil moisture data into a land surface model”, J. Geophys. Res., vol. 111, p. D20102, 2006.
  • K. Scipal, M. Drusch, and W. Wagner “Assimilation of a ERS scatterometer derived soil moisture index in the ECMWF numerical weather prediction system”, Adv. Water Resour., vol. 31, no. 8, pp. 1101–1112, 2008.
  • R. Bindlish, W. T. Crow, and T. J. Jackson, “Role of passive microwave remote sensing in improving flood forecasts”, IEEE Geosci. Remote Sens. Lett., vol. 6, no. 1, pp. 112–116, 2009.
  • E. G. Njoku, et al. “Soil moisture retrieval from AMSR-E”, IEEE Trans. Geosci. Remote Sens., vol. 41, no. 2, pp. 215–229, 2003.
  • T. Schmugge, “Applications of passive microwave observations of surface soil moisture”, J. Hydrol., vol. 212–213, pp. 188–197, 1998.
  • Y. H. Kerr, et al. “Soil moisture retrieval from space: the soil moisture and ocean salinity mission (SMOS)”, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 8, pp. 1729–1735, 2001.
  • N. N. Das, D. Entekhabi, and E. G. Njoku, “An algorithm for merging SMAP radiometer and radar data for high resolution soil moisture retrieval”, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1504–1512, 2011.
  • M. M. Rienecker, et al., “MERRA- NASA's modern-era retrospective analysis for research and applications”, J. Climate, vol. 24, pp. 3624-3648, 2011.
  • C. Funk, et al., “The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes”, Sci. Data, vol. 2, p.150066, 2015.
  • D. Katsanos, A. Retalis, S. Michaelides “Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period”, Atmos. Res., vol. 169, pp. 459-464, 2016.
  • S. Shukla A. McNally G. Husak, C. Funk, “A seasonal agricultural drought forecast system for food-insecure regions of East Africa”, Hydrol. Earth Syst. Sci., vol. 18, pp. 3907-3921, 2014.
  • A. Matloob, O. Sarif, Md. J. S. Um, “Evaluating the inter-relationship between OCO-2 XCO2 and MODIS-LST in an Industrial Belt located at Western Bengaluru City of India Spat”, Inf. Res., vol. 29, no. 3, pp. 257–265, 2021.
  • Z. L. Li, B.H. Tang, et al., “Satellitederived land surface temperature: Current status and perspectives”, Remote Sensing of Environment, vol. 131, pp. 14–37, 2013.
  • Z. Wan, “New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product”, Remote Sensing of Environment, vol. 140, pp. 36–45, 2014.
  • S. H. Roy, A. Chanda, “Assessment of wet season agricultural droughts using monthly MODIS and SAR data in the red and lateritic zone of West Bengal, India Sabita”, Spatial Information Research, vol. 31, pp. 195–210, 2023.
  • D. Entekhabi, et al. “The soil moisture active and passive (SMAP) mission”, IEEE Proc., vol. 98, no. 5, pp. 704–716, 2010.
  • Y. H. Kerr, D. Levine “Forward to the special issue on the soil moisture and ocean salinity (SMOS) mission”, IEEE Trans. Geosci. Remote Sens., vol. 46, no. 3, pp. 583–585, 2008.
  • J. R. Piepmeier et al., “SMAP L1B radiometer half-orbit time-ordered brightness temperatures version 2”, NASA Nat. Snow Ice Data Center Distrib. Active Arch. Center, Boulder, CO, USA, 2015.
  • S. Chan, E. G. Njoku, and A. Colliander, SMAP algorithm theoretical basis document: Level 1C radiometer data product”, Jet Propulsion Lab., California Inst. Technol., Pasadena, CA, USA, JPL D-53053, 2016.
  • S. Chan, E. G. Njoku, and A. Colliander, “SMAP L1C radiometer halforbit 36 km EASE-grid brightness temperatures version 2”, NASA Nat. Snow Ice Data Center Distrib. Active Arch. Center, Boulder, CO, USA., 2015.
  • S. Chan, and R. S. Dunbar, “SMAP level 2 passive soil moisture product specification document”, Jet Propulsion Lab., California Inst. Technol., Pasadena, CA, USA., 2015.
  • S. Chan et al., “Assessment of the SMAP passive soil moisture product”, IEEE Transactıons On Geoscıence and Remote Sensing, vol. 54, no. 8., pp. 4994-5007, 2016.
  • B. Akış, “İstatistiki Yöntemlerle Değer Belirleme ve Değer Haritası Üretimi-Selçuklu Örneği”, Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya, 2013.
  • S. Chatterjee, A. S. Hadi, & B. Price, “Regression analysis by example”, New York, NY: John Wiley & Sons Inc., 2015.
  • S. D. Schubert, et al., "Global meteorological drought: A synthesis of current understanding with a focus on SST drivers of precipitation deficits", Journal of Climate, vol. 29, no. 11, pp. 3989-4019, 2016.
  • A. Berg and J. Sheffield, "Climate change and drought: The soil moisture perspective", Current Climate Change Reports, vol. 4, pp. 180-191, 2018.
  • H. Tao, et al., "Machine learning algorithms for high-resolution prediction of spatiotemporal distribution of air pollution from meteorological and soil parameters", Environment International, vol. 175, p. 107931, 2023.
  • E. Aladağ, "The influence of meteorological factors on air quality in the province of Van, Turkey", Water, Air, & Soil Pollution, vol. 234, no. 4, p. 259, 2023.

İklim Değişikliği ve Hava Kirliliğinin Toprak Nemi Üzerindeki Etkileri: Türkiye Örneği

Yıl 2024, Cilt: 3 Sayı: 2, 135 - 152, 25.11.2024

Öz

İklimsel değişkenlerin toprak nemi üzerindeki etkisi oldukça yüksektir. Bu çalışmada, Türkiye'deki toprak nem durumu, 2016-2022 yılları arasında uydu verileri kullanılarak Kara Yüzey Sıcaklığı (LST), yüzey basıncı (PS) ve yağış değişkenleri için analiz edilmiştir. Sıcaklık değişimlerinin, yüzey basıncının ve yağışın toprak nemi üzerindeki etkileri ve bu etkileşimlerin Türkiye'nin farklı bölgelerinde nasıl farklılık gösterdiği analiz edilmiştir. Yüzey toprak nemi (SSM), yağışla yüksek oranda ilişkiliydi (R 0,74). SSM ve LST arasında yüksek bir korelasyon vardı (R 0,74). Yeraltı toprak nemi (SUSM) yağışla yüksek oranda ilişkiliydi (R 0,73). SUSM ve LST arasında yüksek bir korelasyon vardı (R 0,74). Sera gazı emisyon verileri TÜİK veri portalından alınmış ve toprak nemi arasındaki ilişki incelenmiştir. SSM ve SUSM, f gazları arasında yüksek düzeyde korelasyon gözlenmiştir (R 0,97, R 0,96). Bu çalışma, Türkiye'nin iklim değişkenlerinin toprak nemi üzerindeki etkilerinin anlaşılmasında önemli bir adım olarak değerlendirilebilir. Bulgular, toprak neminin sürdürülebilir tarım ve çevresel faktörler için önemli olduğunu vurgular ve iklim değişkenlerinin bunu nasıl etkilediğine dair derinlemesine bir anlayış sağlar. Bu tür analizler, tarımsal planlama, su kaynakları yönetimi ve çevresel sürdürülebilirlik gibi alanlarda stratejik bilgiler sağlayabilir ve gelecekteki kararlar için daha sağlam bir temel oluşturmaya katkıda bulunabilir.

Kaynakça

  • M. Piles, D. Entekhabi, and A. Camps, “A change detection algorithm for retrieving high-resolution soil moisture from SMAP radar and radiometer observations”, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 12, pp. 4125 – 4131, 2009.
  • E. G. Njoku and D. Entekhabi, “Passive microwave remote sensing of soil moisture,” J. Hydrol., vol. 184, no. 1/2, pp. 101–129, 1996.
  • T. J. Schmugge, W. P. Kustas, J. C. Ritchie, T. J. Jackson, and A. Rango, “Remote sensing in hydrology”, Adv. Water Resour., vol. 25, no. 812, pp. 1367–1385, 2002.
  • P. C. Dubois, J. J. van Zyl, and E. T. Engman, “Measuring soil moisture with imaging radars”, IEEE Trans. Geosci. Remote. Sens., vol. 33, no. 4, pp. 915–926, 1995.
  • J. C. Shi, J. Wang, A. Y. Hsu, P. E. O’Neill, and E. T. Engman, “Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data”, IEEE Trans. Geosci. Remote Sens., vol. 35, no. 5, pp. 1254–1266, 1997.
  • T. J. Jackson, T. J. Schmugge, and E. T. Engman, “Remote sensing applications to hydrology: Soil moisture”, Hydrol. Sci. J.—J. Des. Sci. Hydrol., vol. 41, no. 4, pp. 517–530, 1996.
  • Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, Nat. Res. Council, Washington, DC, 2007.
  • D. Entekhabi, et al., “An Earth system pathfinder for global mapping of soil moisture and land freeze/thaw: The Hydrosphere State (HYDROS) Mission Concept”, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 10, pp. 2184– 2195, 2004.
  • X. Wang, S. Jian, L. Gamage, J. L. “Effect of nitrogen fertilization on central tendency and spatial heterogeneity of soil moisture, pH and dissolved organic carbon and nitrogen in two bioenergy croplands “, Journal of Plant Nutrition and Soil Science, vol. 185, pp.343, 2022.
  • S. Manzoni, J. P. Schimel, & A. Porporato, “Responses of soil microbial communities to water stress: results from a meta-analysis”, Ecology vol. 93, pp. 930–938, 2012.
  • P. D’Odorico, F. Laio, A. Porporato, & I. Rodriguez-Iturbe, “Hydrologic controls on soil carbon and nitrogen cycles. II. A case study”, Adv. Water Resour. vol. 26, pp. 59–70, 2003.
  • G. Botter, F. Peratoner, A. Porporato, I. Rodriguez-Iturbe, & A. Rinaldo, “Signatures of large-scale soil moisture dynamics on streamflow statistics across US climate regimes”, Wat. Resour. Res. 43, W11413, 2007.
  • C. Rosenzweig, F. N. Tubiello, R. Goldberg, E. Mills, & J. Bloomfield, “Increased crop damage in the US from excess precipitation under climate change”, Glob. Environ. Change vol. 12, pp. 197–202, 2002.
  • F. Fécan, B. Marticorena, & G. Bergametti, “Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas”, Ann. Geophys. vol. 17, pp. 149–157, 1999.
  • A. Bomblies, & E. A. B. Eltahir, “Assessment of the impact of climate shifts on malaria transmission in the Sahel”, EcoHealth 6, 426–437, 2010.
  • M. Hirschi, B. Mueller, W. Dorigo, & S. I. Seneviratne, “Using remotely sensed soil moisture for land–atmosphere coupling diagnostics: the role of surface vs. root-zone soil moisture variability”, Remote Sens. Environ. vol. 154, pp. 246–252, 2014.
  • J. Qiu, W. T. Crow, & G. S. Nearing, “The impact of vertical measurement depth on the information content of soil moisture for latent heat flux estimation”, J. Hydrometeorol. vol. 19, pp. 2419–2430, 2016.
  • D. Entekhabi, I. Rodriguez-Iturbe, & R. L. Bras, “Variability in largescale water balance with land surface-atmosphere interaction”, J. Clim. vol. 5, pp. 798–813, 1992.
  • L. Tsang, T. Jackson, “Satellite remote sensing missions for monitoring water, carbon, and global climate change”, Proc. IEEE, vol.98, no. 5, pp. 645–648, 2010.
  • M.F. McCabe, et al. “The future of Earth observation in hydrology”, Hydrol. Earth Syst. Sci., vol. 21, pp. 3879–3914, 2017.
  • I.E. Mladenova, et al. “Remote monitoring of soil moisture using passive microwave-based techniques—Theoretical basis and overview of selected algorithms for AMSR-E”, Remote Sens. Environ., vol. 144, pp. 197–213, 2014.
  • Z. Xin, H. N. Niu, Z. Raghavan, V. X. Song, “Soil moisture retrieval in farmland using C-band SAR and optical data”, Spat. Inf. Res. vol. 25, pp. 431–438, 2017.
  • R. Eswar, N.N. Das, C. Poulsen, A. Behrangi, J. Swigart, M. Svoboda, D. Entekhabi, S. Yueh, B. Doorn, J. Entin, “SMAP soil moisture change as an indicator of drought conditions”, Remote Sens., vol. 10, p. 788, 2018.
  • E. M. Blyth, C. C. Daamen, “The accuracy of simple soil water models in climate forecasting”, Hydrol. Earth Syst. Sci., vol. 1, pp. 241–248, 1997.
  • R. Chakraborty, R. Rahmoune, P. Ferrazzoli, “Use of passive microwave signatures to detect and monitor flooding events in Sundarban Delta”, in Proc. IGARSS, 2011, pp. 3066–3069.
  • L. L. Bourgeau-Chavez, E. S. Kasischke, M. D. Rutherford, “Evaluation of ERS SAR data for prediction of fire danger in a Boreal region”, Int. J. Wildland Fire, vol. 9, pp. 183–194, 1999.
  • W. Ni-Meister, P. R. Houser, and J. P. Walker, “Soil moisture initialization for climate prediction: Assimilation of scanning multifrequency microwave radiometer soil moisture data into a land surface model”, J. Geophys. Res., vol. 111, p. D20102, 2006.
  • K. Scipal, M. Drusch, and W. Wagner “Assimilation of a ERS scatterometer derived soil moisture index in the ECMWF numerical weather prediction system”, Adv. Water Resour., vol. 31, no. 8, pp. 1101–1112, 2008.
  • R. Bindlish, W. T. Crow, and T. J. Jackson, “Role of passive microwave remote sensing in improving flood forecasts”, IEEE Geosci. Remote Sens. Lett., vol. 6, no. 1, pp. 112–116, 2009.
  • E. G. Njoku, et al. “Soil moisture retrieval from AMSR-E”, IEEE Trans. Geosci. Remote Sens., vol. 41, no. 2, pp. 215–229, 2003.
  • T. Schmugge, “Applications of passive microwave observations of surface soil moisture”, J. Hydrol., vol. 212–213, pp. 188–197, 1998.
  • Y. H. Kerr, et al. “Soil moisture retrieval from space: the soil moisture and ocean salinity mission (SMOS)”, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 8, pp. 1729–1735, 2001.
  • N. N. Das, D. Entekhabi, and E. G. Njoku, “An algorithm for merging SMAP radiometer and radar data for high resolution soil moisture retrieval”, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1504–1512, 2011.
  • M. M. Rienecker, et al., “MERRA- NASA's modern-era retrospective analysis for research and applications”, J. Climate, vol. 24, pp. 3624-3648, 2011.
  • C. Funk, et al., “The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes”, Sci. Data, vol. 2, p.150066, 2015.
  • D. Katsanos, A. Retalis, S. Michaelides “Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period”, Atmos. Res., vol. 169, pp. 459-464, 2016.
  • S. Shukla A. McNally G. Husak, C. Funk, “A seasonal agricultural drought forecast system for food-insecure regions of East Africa”, Hydrol. Earth Syst. Sci., vol. 18, pp. 3907-3921, 2014.
  • A. Matloob, O. Sarif, Md. J. S. Um, “Evaluating the inter-relationship between OCO-2 XCO2 and MODIS-LST in an Industrial Belt located at Western Bengaluru City of India Spat”, Inf. Res., vol. 29, no. 3, pp. 257–265, 2021.
  • Z. L. Li, B.H. Tang, et al., “Satellitederived land surface temperature: Current status and perspectives”, Remote Sensing of Environment, vol. 131, pp. 14–37, 2013.
  • Z. Wan, “New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product”, Remote Sensing of Environment, vol. 140, pp. 36–45, 2014.
  • S. H. Roy, A. Chanda, “Assessment of wet season agricultural droughts using monthly MODIS and SAR data in the red and lateritic zone of West Bengal, India Sabita”, Spatial Information Research, vol. 31, pp. 195–210, 2023.
  • D. Entekhabi, et al. “The soil moisture active and passive (SMAP) mission”, IEEE Proc., vol. 98, no. 5, pp. 704–716, 2010.
  • Y. H. Kerr, D. Levine “Forward to the special issue on the soil moisture and ocean salinity (SMOS) mission”, IEEE Trans. Geosci. Remote Sens., vol. 46, no. 3, pp. 583–585, 2008.
  • J. R. Piepmeier et al., “SMAP L1B radiometer half-orbit time-ordered brightness temperatures version 2”, NASA Nat. Snow Ice Data Center Distrib. Active Arch. Center, Boulder, CO, USA, 2015.
  • S. Chan, E. G. Njoku, and A. Colliander, SMAP algorithm theoretical basis document: Level 1C radiometer data product”, Jet Propulsion Lab., California Inst. Technol., Pasadena, CA, USA, JPL D-53053, 2016.
  • S. Chan, E. G. Njoku, and A. Colliander, “SMAP L1C radiometer halforbit 36 km EASE-grid brightness temperatures version 2”, NASA Nat. Snow Ice Data Center Distrib. Active Arch. Center, Boulder, CO, USA., 2015.
  • S. Chan, and R. S. Dunbar, “SMAP level 2 passive soil moisture product specification document”, Jet Propulsion Lab., California Inst. Technol., Pasadena, CA, USA., 2015.
  • S. Chan et al., “Assessment of the SMAP passive soil moisture product”, IEEE Transactıons On Geoscıence and Remote Sensing, vol. 54, no. 8., pp. 4994-5007, 2016.
  • B. Akış, “İstatistiki Yöntemlerle Değer Belirleme ve Değer Haritası Üretimi-Selçuklu Örneği”, Yüksek Lisans Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya, 2013.
  • S. Chatterjee, A. S. Hadi, & B. Price, “Regression analysis by example”, New York, NY: John Wiley & Sons Inc., 2015.
  • S. D. Schubert, et al., "Global meteorological drought: A synthesis of current understanding with a focus on SST drivers of precipitation deficits", Journal of Climate, vol. 29, no. 11, pp. 3989-4019, 2016.
  • A. Berg and J. Sheffield, "Climate change and drought: The soil moisture perspective", Current Climate Change Reports, vol. 4, pp. 180-191, 2018.
  • H. Tao, et al., "Machine learning algorithms for high-resolution prediction of spatiotemporal distribution of air pollution from meteorological and soil parameters", Environment International, vol. 175, p. 107931, 2023.
  • E. Aladağ, "The influence of meteorological factors on air quality in the province of Van, Turkey", Water, Air, & Soil Pollution, vol. 234, no. 4, p. 259, 2023.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fotogrametri ve Uzaktan Algılama
Bölüm Araştırma Makalesi
Yazarlar

Nehir Uyar 0000-0003-3358-3145

Yayımlanma Tarihi 25 Kasım 2024
Gönderilme Tarihi 17 Ağustos 2024
Kabul Tarihi 7 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 3 Sayı: 2

Kaynak Göster

APA Uyar, N. (2024). Effects of Climate Change and Air Pollution on Soil Moisture: The Case of Türkiye. Türk Mühendislik Araştırma Ve Eğitimi Dergisi, 3(2), 135-152.
AMA Uyar N. Effects of Climate Change and Air Pollution on Soil Moisture: The Case of Türkiye. TMAED. Kasım 2024;3(2):135-152.
Chicago Uyar, Nehir. “Effects of Climate Change and Air Pollution on Soil Moisture: The Case of Türkiye”. Türk Mühendislik Araştırma Ve Eğitimi Dergisi 3, sy. 2 (Kasım 2024): 135-52.
EndNote Uyar N (01 Kasım 2024) Effects of Climate Change and Air Pollution on Soil Moisture: The Case of Türkiye. Türk Mühendislik Araştırma ve Eğitimi Dergisi 3 2 135–152.
IEEE N. Uyar, “Effects of Climate Change and Air Pollution on Soil Moisture: The Case of Türkiye”, TMAED, c. 3, sy. 2, ss. 135–152, 2024.
ISNAD Uyar, Nehir. “Effects of Climate Change and Air Pollution on Soil Moisture: The Case of Türkiye”. Türk Mühendislik Araştırma ve Eğitimi Dergisi 3/2 (Kasım 2024), 135-152.
JAMA Uyar N. Effects of Climate Change and Air Pollution on Soil Moisture: The Case of Türkiye. TMAED. 2024;3:135–152.
MLA Uyar, Nehir. “Effects of Climate Change and Air Pollution on Soil Moisture: The Case of Türkiye”. Türk Mühendislik Araştırma Ve Eğitimi Dergisi, c. 3, sy. 2, 2024, ss. 135-52.
Vancouver Uyar N. Effects of Climate Change and Air Pollution on Soil Moisture: The Case of Türkiye. TMAED. 2024;3(2):135-52.