The AlxGa1-xN and InxGa1-xN alloys are widely used in optoelectronic devices operating in the visible and ultraviolet. They are also attractive for high power, high temperature and high frequency electronic applications. The specific properties of these materials are the source of the charges induced by the effects of spontaneous and piezo-electric polarizations at the interfaces of quantum wells and super lattices. They are used in heterojunction field effect transistors HFET, modulated doping field effect transistors MODFET, and heterojunction bipolar transistors HBT. We study AlxGa1-xN and InxGa1-xN in the cubic phases because they would have better electronic and optical performances than in their hexagonal phases. We first present GaN, AlN, InN and their alloys AlxGa1-xN and InxGa1-xN. In the second section; we describe the main steps of Monte Carlo simulation method that we use. In the third section; we calculate steady-state electron drift velocity versus electric field for different temperatures and various molar fractions x. We consider the acoustic, piezo-electric, ionized impurities and polar optical phonon scatterings. We compare our results with published work and are in satisfactory agreement
Other ID | JA56RE55NG |
---|---|
Journal Section | Articles |
Authors | |
Publication Date | July 23, 2016 |
Published in Issue | Year 2012 Volume: 2 Issue: 4 |