Araştırma Makalesi
BibTex RIS Kaynak Göster

HARMANLANMIŞ ÖĞRETİME YÖNELİK HAZIRBULUNUŞLUK ÖLÇEK UYARLAMASI: FEN BİLİMLERİ ÖĞRETMENLERİNİN HAZIRBULUNUŞLUK DÜZEYLERİ

Yıl 2024, Cilt: 14 Sayı: 1, 337 - 355, 31.01.2024
https://doi.org/10.24315/tred.1362960

Öz

Bu çalışmanın amacı, harmanlanmış öğrenme ortamlarını oluşturan ve yöneten öğretmenlerin hazırbulunuşluk düzeylerini incelemek için bir anket uyarlamaktır. Araştırmada, Archibald, Graham ve Larsen (2021) tarafından hazırlanan "Blended Teaching Readiness Survey" anketi kullanılarak Fen Bilgisi Öğretmenlerinin çevrimiçi ve harmanlanmış öğrenme yetkinliklerini belirlemek amaçlanmıştır. Orijinal ankette hesaplanan Cronbach Alfa güvenirlik katsayısı α= 0.85 olarak bulunmuştur. Anket uyarlanma sürecinde, öncelikle yabancı dil alanında uzman ve yurtdışında deneyime sahip üç uzmandan görüş alınmıştır. Anket daha sonra Türkçe'ye çevrilmiş ve hem orijinal hem de Türkçe versiyonları, yabancı dil uzmanlarının yanı sıra Türk dili uzmanlarının görüşüne sunulmuştur. Uzmanlardan gelen geri bildirimlere göre düzenlemeler yapılmış ve son halini verilmiştir. Anket bu haliyle, 260 Fen Bilgisi Öğretmenine uygulanmıştır. Anketin faktör analizi sonucunda, dört bileşenli bir yapı olduğu belirlenmiştir. Dört bileşen ve güvenirlik katsayıları şu şekildedir: (1) Çevrimiçi entegrasyon α= 0,95, (2) Öğretimin kişiselleştirilmesi α= 0,94, (3) Eğilimler α= 0,91, (4) Çevrimiçi etkileşim α= 0,93. Toplamda 43 madde içeren anketin genel güvenirlik katsayısı α= 0,98 olarak hesaplanmıştır. Orijinal anket beş faktörden oluşurken, uyarlanan anket dört faktörlü bir yapıya sahiptir. Uyarlanmış anket, Fen Bilimleri öğretmenlerinin harmanlanmış öğrenmeye yönelik hazırbulunuşluk düzeylerini ölçebilecek yüksek güvenirlik değerine sahip bir yapıya sahiptir. Güvenirlik ve geçerlik çalışmaları tamamlanan bu anket ile Fen Bilimleri öğretmenlerinin hazırbulunuşluk düzeyleri çeşitli değişkenler açısından incelenmiş, sonuçlar ve öneriler sunulmuştur.

Etik Beyan

Yapılan bu çalışmada araştırma etiği ilkeleri gözetilmiş olup gerekli etik kurul izinleri alınmıştır. Etik kurul izni kapsamında; Erzincan Binali Yıldırım Üniversitesi İnsan Araştırmaları Eğitim Bilimleri Etik Kurul’u 20/08/2021 tarihi, 08/12 sayılı belge alınmıştır

Kaynakça

  • Alsalhi, N. R., Al-Qatawneh, S., Eltahir, M., & Aqel, K. (2021). Does blended learning improve the academic achievement of undergraduate students in the mathematics course?: A case study in higher education. EURASIA Journal of Mathematics, Science and Technology Education, 17(4), 1-14.
  • Archibald, D. E., Graham, C. R., & Larsen, R. (2021). Validating a blended teaching readiness instrument for primary/secondary preservice teachers. British Journal of Educational Technology, 52(2), 536-551.
  • Arslan, İ., & Yıldırım, S. (2019). Harmanlanmış öğrenme uygulamalarının öğretmen performansı üzerindeki etkisi. Eğitim ve Öğretim Araştırmaları Dergisi, 7(12).
  • Ballantine, J. H., & Spade, J. Z. (2008). Schools and Society: A Sociological Approach to Education: Pine Forge Press.
  • Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238-246. doi:10.1037/0033-2909.107.2.238
  • Büyüköztürk, Ş. (2002). Faktör analizi: Temel kavramlar ve ölçek geliştirmede kullanımı. Kuram ve Uygulamada Eğitim Yönetimi, 32(32), 470-483.
  • Bonk, C., & Graham, C. (2006). the Handbook of Blended Learning: Global Perspective, Local Design. California, USA: John Wiley and Sons, Inc.
  • Boyle, T., Bradley, C., Chalk, P., Jones, R. & Pickard, P. (2003). Using blended learning to improve student success rates in learning to program. Journal of educational Media, 28(2-3), 165-178.
  • Brislin, R. W. (1986). The wording and translation of research instruments. In W. J. L. J. W. Berry (Ed.), Field methods in cross-cultural research (pp. 137-164). Beverly Hills, CA: Sage.
  • Browne, M. W., & Cudeck, R. (1992). Alternative Ways of Assessing Model Fit. Sociological Methods & Research, 21(2), 230-258. doi:10.1177/0049124192021002005
  • Byrne, B. M. (2016). Structural Equation Modeling With AMOS: Basic Concepts, Applications, and Programming (Third Edition (3rd ed.) ed.): Routledge.
  • Caprara, G. V., Barbaranelli, C., Steca, P., & Malone, P. S. (2006). Teachers' self-efficacy beliefs as determinants of job satisfaction and students' academic achievement: A study at the school level. Journal of School Psychology, 44(6), 473-490. doi:https://doi.org/10.1016/j.jsp.2006.09.001
  • Chang,C.-C., & Wang, C.-Y. (2018). The effectiveness of blended learning for the improvement of pedagogical skills among taiwanese in-service teachers. Interactive Learning Environments, 26(4), 541-552.
  • Cutri, R. M., Mena, J., & Whiting, E. F. (2020). Faculty readiness for online crisis teaching: transitioning to online teaching during the COVID-19 pandemic. European Journal of Teacher Education, 43(4), 523-541.
  • Dziuban, C., Hartman, J., Juge, F., Moskal, P. & Sorg, S. (2006). Blended learning enters the mainstream. The handbook of blended learning: Global perspectives, local designs, 195, 206.
  • Garnham,C., & Kaleta, R. (2002). Introduction to hybrid courses. Teaching With Technology Today, 8 (6), 5. Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annu Rev Psychol, 53, 109-132.
  • Gorsuch, R. L. (1983). Factor Analysis (2nd ed.): Psychology Press.
  • Kalaycı, Ş. (2010). SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri (5. Baski). Ankara: Asil Yayınevi.
  • Lim, D. H. & Morris, M. L. (2009). Learner and instructional factors influencing learning outcomes within a blended learning environment. Educational Technology ve Society, 12(4), 282-293.
  • López-Pérez, M. V., Pérez-López, M. C. & Rodríguez-Ariza, L. (2011). Blended learning in higher education: Students’ perceptions and their relation to outcomes. Computers ve Education, 56(3), 818-826.
  • Hambleton, R. K. (2005). Issues, designs, and technical guidelines for adapting tests into multiple languages and cultures. In P. F. M. R. K. Hambleton, & C. D. Spielberger (Ed.), Adapting educational and psychological tests for cross-cultural assessment (pp. 3-38). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Hanushek, E. A., Woessmann, L., & Zhang, L. (2011). General education, vocational education, and labor-market outcomes over the lifecycle. Journal of Human Resources, 46(3), 467-501.
  • Harkness, J. A., Van de Vijver, F. J. R., & Mohler, P. P. (2003a). Cross-cultural survey methods. Hoboken, NJ: John Wiley & Sons.
  • Harkness, J. A., Van de Vijver, F. J. R., & Mohler, P. P. (2003b). Social desirability in cross-cultural research. In A. F. J. R. Van de Vijver, Chasiotis, & S. Breugelmans (Eds.), Fundamental questions in cross-cultural psychology (pp. 287-302). Cambridge, UK: Cambridge University Press.
  • Hsiao, Y.-C., & Shiao, Y.-T. (2018). Research on gender differences in the digital learning performance of university students. Paper presented at the Proceedings of the 9th International Conference on E-Education, E-Business, E-Management and E-Learning, San Diego, California. https://doi.org/10.1145/3183586.3183593
  • Horton, W. (2000). Designing Web-Based Training. How to teach anyone, anything, anywhere, anytime, William Horton Consulting, 1, New York, s. 2-121.
  • Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. doi:10.1080/10705519909540118
  • Kline, R. B. (2016). Principles and practice of structural equation modeling, 4th ed. New York, NY, US: Guilford Press.
  • Korkmaz, Ö., & Yurtseven, N. (2016). Öğretmenlerin harmanlanmış öğrenme uygulamalarına yönelik algıları. Eğitim ve Öğretim Araştırmaları Dergisi, 4(8).
  • O'Toole, J. M. & Absalom, D. J. (2003). The impact of blended learning on student outcomes: Is there room on the horse for two?. Journal of Educational Media, 28(2-3), 179-190.
  • Osguthorpe, R.T & Graham, C. R. (2003). Blended learning environments definitions and directions. The Quarterly Review of Distance Education, 4(3), 227-233. http://eds.a.ebscohost.com/eds/pdfviewer/pdfviewer?vid=1&sid=3c3a68d4-992f-4959-8d8e-11a1f9dd9a07%40sdc-v-sessmgr02.
  • Pulham, E., & Graham, C. R. (2018). Comparing K-12 online and blended teaching competencies: A literature review. Distance Education, 39(3), 411-432.
  • Savara, V., & Parahoo, S. (2018). Unraveling determinants of quality in blended learning: are there gender-based differences? International Journal of Quality & Reliability Management, 35(9), 2035-2051. doi:10.1108/IJQRM-11-2017-0233
  • Şahin, F., & Aydın, A. (2020). Examining the blended learning skills of teachers who have received graduate education. Journal of Education and Training Studies, 8(2), 197-205.
  • Twigg, C. A. (2003). Improving learning and reducing costs: New models for online learning. Educause review, 38, (5).
  • Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1-10. doi:10.1007/BF02291170
  • van der Want, A. C., den Brok, P., Beijaard, D., Brekelmans, M., Claessens, L. C. A., & Pennings, H. J. M. (2019). The relation between teachers’ interpersonal role identity and their self-efficacy, burnout and work engagement. Professional Development in Education, 45(3), 488-504. doi:10.1080/19415257.2018.1511453
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fen Bilgisi Eğitimi, Eğitim Teknolojisi ve Bilgi İşlem
Bölüm Makaleler
Yazarlar

Özkan Yılmaz 0000-0001-8963-3354

Taner Bulut 0009-0001-4667-8277

Erken Görünüm Tarihi 26 Ocak 2024
Yayımlanma Tarihi 31 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 14 Sayı: 1

Kaynak Göster

APA Yılmaz, Ö., & Bulut, T. (2024). HARMANLANMIŞ ÖĞRETİME YÖNELİK HAZIRBULUNUŞLUK ÖLÇEK UYARLAMASI: FEN BİLİMLERİ ÖĞRETMENLERİNİN HAZIRBULUNUŞLUK DÜZEYLERİ. Trakya Eğitim Dergisi, 14(1), 337-355. https://doi.org/10.24315/tred.1362960