Research Article
BibTex RIS Cite

Water Pump Harnessed by Vortex-Induced Vibrations: Potential and Performance Evaluation in Turkish Rivers

Year 2024, Volume: 10 Issue: 3, 180 - 193, 01.09.2024
https://doi.org/10.52998/trjmms.1473474

Abstract

In addition to scientific papers discussing the known destructive characteristics of Vortex-Induced Vibrations (VIV), the number of studies demonstrating different ways to harness the phenomenon has increased in recent years. Various research endeavors leveraging the physics of VIV, such as electricity generation, mechanical energy production, and the development of residential water meters, highlight the significance of this subject. In alignment with these studies, this paper first provides a physical explanation of VIV on circular cylinders. Subsequently, it discusses a recently patented device designed to harness VIV for water pumping, along with presenting a mathematical model applicable to its calculations. Furthermore, the characteristics of three different rivers from different geographical regions of Turkey - Kızılırmak, Büyük Menderes, and Meriç Rivers - are analyzed at specific coordinates. Preliminary calculations are conducted for three distinct setups of VIV-driven water pumps tailored for each of these rivers, evaluating their pumping capacity, maximum pumping heights, and corresponding flow rates. Thus, unveiling the potential contribution to agricultural irrigation and afforestation efforts.

References

  • Akaydın, H.D., Elvin, N., Andreopoulos, Y. (2010). Energy harvesting from highly unsteady fluid flows using piezoelectric materials. Journal of Intelligent Material Systems and Structures 21(13): 1263–1278.
  • Baredar, P., Yadav, N. (2019). Performance Analysis of Vortex Induced Vibration Based Wind Energy Harvesting System. Advances in Power Generation from Renewable Energy Sources (APGRES).
  • Bearman, P.W. (2009). Understanding and predicting vortex-induced vibrations. Journal of Fluid Mechanics 634: 1-4.
  • Bernitsas, M.M., Raghavan, K. (2005). “Fluid motion energy converter”. International. Provisional Patent Application, USA Patent and Trademark Office: 504.
  • Bernitsas, M.M., Ben-Simon, Y., Raghavan, K., Garcia, E.M.H. (2006, January). The VIVACE converter: model tests at high damping and Reynolds number around 105. International Conference on Offshore Mechanics and Arctic Engineering, Vol. 47470, s. 639-653.
  • Bernitsas, M.M., Raghavan, K., Ben-Simon, Y., Garcia, E.M.H. (2008). VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy from Fluid Flow. ASME. Journal of Offshore Mechanics and Arctic Engineering 130(4): 041101.
  • Bukka, S.R., Magee, A.R., Jaiman, R.K. (2020). Stability analysis of passive suppression for vortex-induced vibration. Journal of Fluid Mechanics 886: A12.
  • Dai, H.L., Abdelkefi, A., Yang, Y., Wang, L. (2016). Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations. Applied Physics Letters 108(5): 053902.
  • Devlet Su İşleri Genel Müdürlüğü (2018). 2015 Akım Gözlem Yıllığı Cilt-1, Ankara.
  • Dryden, H. L., Von Kármán, T., Kuerti, G., Van Den Dungen, F. H., Howarth, L., Peres, J. (1958). Advances in applied mechanics (Vol. 5), Academic Press.
  • Du, L., Sun, X. (2015). Suppression of vortex-induced vibration using the rotary oscillation of a cylinder. Physics of Fluids 27(2).
  • Duranay, A., Kınacı, Ö.K. (2020). Enhancing two-dimensional computational approach for vortex-induced vibrations by scaling lift force. Ocean Engineering 217: 107620.
  • Duranay, A., Usta, O., Kınacı, Ö.K. (2021). Systematic investigation of the tip effects on vortex-induced vibrations for circular cylinders. Ocean Engineering 239: 109829.
  • Duranay, A., Kınacı, Ö.K., Bernitsas, M.M. (2022). Effect of aspect ratio on hydrokinetic energy harnessing using cylinders in VIV. Journal of Ocean Engineering and Marine Energy 8(2): 217-232.
  • Duranay, A., Demirhan, A.E., Dobrucalı, E., Kınacı, Ö.K. (2023). A review on vortex-induced vibrations in confined flows. Ocean Engineering 285: 115309.
  • Govardhan, R., Williamson, C. (2000). Modes of vortex formation and frequency response of a freely vibrating cylinder. Journal of Fluid Mechanics 420: 85-130.
  • Hamdan, C., Allport, J., Sajedin, A. (2021). Piezoelectric power generation from the vortex-induced vibrations of a semi-cylinder exposed to water flow. Energies 14(21): 6964.
  • Ji, C., Xu, W., Sun, H., Wang, R., Ma, C., Bernitsas, M.M. (2018). Interactive flow-induced vibrations of two staggered, low mass-ratio cylinders in the TrSL3 Flow Regime (2.5× 104< Re< 1.2× 105): Smooth Cylinders. Journal of Offshore Mechanics and Arctic Engineering 140(4): 041801.
  • Kınacı, Ö.K., Gökçe, M.K. (2020). Akımla kendi kendini tahrik eden pompa (TPE 2015 17104).
  • Kınacı, Ö.K., Demirhan, A.E., Duranay, A. (2022). Vortex-induced vibrations of a single-degree-of-freedom circular cylinder in the vicinity of the free surface. Applied Ocean Research 124: 103202.
  • Lakka, S. (2013). Flowmeter based on vibration induced by vortices, Doktora Tezi, Lempäälä, Finlandiya.
  • Lee, J.H., Bernitsas, M.M. (2011). High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter. Ocean Engineering 38: 1697-1712.
  • Lou, M., Qian, G., Li, R. (2020). Experimental investigation of the suppression of vortex-induced vibration in four cylinders arranged in a square under different spacing ratios. Journal of Marine Science and Technology 25(2): 467-481.
  • Luo, F., Gao, C., Zhang, W. (2022). The key to suppress vortex-induced vibration: Stability of the structural mode. Journal of Fluids and Structures 113: 103692.
  • Modir, A., Goudarzi, N. (2019). Experimental investigation of Reynolds number and spring stiffness effects on vortex induced vibrations of a rigid circular cylinder. European Journal of Mechanics-B/Fluids 74: 34-40.
  • Rahman, M.A.A. (2015). Vortex-induced Vibration of Circular Cylindrical Structure with Different Aspect Ratios, Doktora Tezi.
  • Sumer, B.M., Fredsøe, J. (2006). Advanced Series on Ocean Engineering, Volume 26: Hydrodynamics around Cylindrical Structures (Revised Edition). In World Scientific, Vol. 33, Issue 1.
  • UM News Service, University of Michigan - A new renewable energy concept (2008). Erişim tarihi: 05.04.2024, https://www.youtube.com/watch?v=jcyM3c5ylSU ‘den alınmıştır.
  • Wang, C., Huang, Z., Hua, X., He, X., Zhou, S., Chen, Z. (2022). Aerodynamic mechanism of triggering and suppression of vortex-induced vibrations for a triple-box girder. Journal of Wind Engineering and Industrial Aerodynamics 227: 105051.
  • Williamson, C.H., Govardhan, R. (2004). Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36: 413-455.
  • Yexuan, M., Zhiyou, S. ve Wanhai, X. (2022). Study on vortex-induced vibration suppression of marine riser based on energy transfer. Chinese Journal of Theoretical and Applied Mechanics 54(4): 901-911.
  • Zdravkovich, M.M. (1997). Flow around circular cylinders: Volume 2: Applications (Vol. 2), Oxford university press.

Girdap Kaynaklı Titreşimlerle Tahrik Olan Su Pompası: Türkiye Akarsularında Potansiyel ve Performans Değerlendirmesi

Year 2024, Volume: 10 Issue: 3, 180 - 193, 01.09.2024
https://doi.org/10.52998/trjmms.1473474

Abstract

Girdap Kaynaklı Titreşimler (GKT) konusunun bilinen yıkıcı – tahrip edici özelliklerinin tartışıldığı bilimsel yayınlara ek olarak, son yıllarda ortaya konan ve fenomenden farklı şekillerde yararlanılabildiğini gösteren çalışmaların sayısı artmaktadır. Olayın fiziğinden yararlanarak elektrik üretimi, mekanik enerji üretimi ve mesken tipi su sayacı geliştirilmesi gibi farklı çalışmalar konunun önemini artırmaktadır. Çalışmada öncelikle dairesel silindirler etrafında meydana gelen GKT olayının fiziksel izahatı yapılmıştır. Daha sonra GKT ile tahrik edilerek kendi kendine su pompalaması planlanan ve son yıllarda patentlenmiş bir düzenek fikri tartışılmıştır. Bu su pompasının hesaplamalarında kullanılabilecek matematiksel bir model sunulmuştur. Ardından Türkiye’nin üç farklı coğrafi bölgesinde yer alan Kızılırmak, Büyük Menderes ve Meriç Nehirleri için belirli koordinatlardaki akarsu karakteristikleri çıkarılmıştır. Özellikleri belirlenen akarsuların her birinde kullanılması planlanan GKT tahrikli su pompaları için üç farklı düzeneğin ön hesabı yapılmıştır. Ön hesaplamalar ile temel özellikleri belirlenen düzeneklerin bu üç akarsuda pompalayabileceği su miktarı depolanacak yükseklikler ve karşılık gelen debiler cinsinden ortaya konmuştur. Böylece tarımsal sulama ve ormanlaştırma çalışmalarına ne kadar katkı sağlayacağına dair potansiyel ortaya çıkarılmıştır.

Thanks

İTÜ Gemi İnşaatı ve Deniz Bilimleri Fakültesi yönetimine ve Ata Nutku Gemi Model Deney Laboratuvarı çalışanlarına verdikleri destekten ötürü teşekkür ederim.

References

  • Akaydın, H.D., Elvin, N., Andreopoulos, Y. (2010). Energy harvesting from highly unsteady fluid flows using piezoelectric materials. Journal of Intelligent Material Systems and Structures 21(13): 1263–1278.
  • Baredar, P., Yadav, N. (2019). Performance Analysis of Vortex Induced Vibration Based Wind Energy Harvesting System. Advances in Power Generation from Renewable Energy Sources (APGRES).
  • Bearman, P.W. (2009). Understanding and predicting vortex-induced vibrations. Journal of Fluid Mechanics 634: 1-4.
  • Bernitsas, M.M., Raghavan, K. (2005). “Fluid motion energy converter”. International. Provisional Patent Application, USA Patent and Trademark Office: 504.
  • Bernitsas, M.M., Ben-Simon, Y., Raghavan, K., Garcia, E.M.H. (2006, January). The VIVACE converter: model tests at high damping and Reynolds number around 105. International Conference on Offshore Mechanics and Arctic Engineering, Vol. 47470, s. 639-653.
  • Bernitsas, M.M., Raghavan, K., Ben-Simon, Y., Garcia, E.M.H. (2008). VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy from Fluid Flow. ASME. Journal of Offshore Mechanics and Arctic Engineering 130(4): 041101.
  • Bukka, S.R., Magee, A.R., Jaiman, R.K. (2020). Stability analysis of passive suppression for vortex-induced vibration. Journal of Fluid Mechanics 886: A12.
  • Dai, H.L., Abdelkefi, A., Yang, Y., Wang, L. (2016). Orientation of bluff body for designing efficient energy harvesters from vortex-induced vibrations. Applied Physics Letters 108(5): 053902.
  • Devlet Su İşleri Genel Müdürlüğü (2018). 2015 Akım Gözlem Yıllığı Cilt-1, Ankara.
  • Dryden, H. L., Von Kármán, T., Kuerti, G., Van Den Dungen, F. H., Howarth, L., Peres, J. (1958). Advances in applied mechanics (Vol. 5), Academic Press.
  • Du, L., Sun, X. (2015). Suppression of vortex-induced vibration using the rotary oscillation of a cylinder. Physics of Fluids 27(2).
  • Duranay, A., Kınacı, Ö.K. (2020). Enhancing two-dimensional computational approach for vortex-induced vibrations by scaling lift force. Ocean Engineering 217: 107620.
  • Duranay, A., Usta, O., Kınacı, Ö.K. (2021). Systematic investigation of the tip effects on vortex-induced vibrations for circular cylinders. Ocean Engineering 239: 109829.
  • Duranay, A., Kınacı, Ö.K., Bernitsas, M.M. (2022). Effect of aspect ratio on hydrokinetic energy harnessing using cylinders in VIV. Journal of Ocean Engineering and Marine Energy 8(2): 217-232.
  • Duranay, A., Demirhan, A.E., Dobrucalı, E., Kınacı, Ö.K. (2023). A review on vortex-induced vibrations in confined flows. Ocean Engineering 285: 115309.
  • Govardhan, R., Williamson, C. (2000). Modes of vortex formation and frequency response of a freely vibrating cylinder. Journal of Fluid Mechanics 420: 85-130.
  • Hamdan, C., Allport, J., Sajedin, A. (2021). Piezoelectric power generation from the vortex-induced vibrations of a semi-cylinder exposed to water flow. Energies 14(21): 6964.
  • Ji, C., Xu, W., Sun, H., Wang, R., Ma, C., Bernitsas, M.M. (2018). Interactive flow-induced vibrations of two staggered, low mass-ratio cylinders in the TrSL3 Flow Regime (2.5× 104< Re< 1.2× 105): Smooth Cylinders. Journal of Offshore Mechanics and Arctic Engineering 140(4): 041801.
  • Kınacı, Ö.K., Gökçe, M.K. (2020). Akımla kendi kendini tahrik eden pompa (TPE 2015 17104).
  • Kınacı, Ö.K., Demirhan, A.E., Duranay, A. (2022). Vortex-induced vibrations of a single-degree-of-freedom circular cylinder in the vicinity of the free surface. Applied Ocean Research 124: 103202.
  • Lakka, S. (2013). Flowmeter based on vibration induced by vortices, Doktora Tezi, Lempäälä, Finlandiya.
  • Lee, J.H., Bernitsas, M.M. (2011). High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter. Ocean Engineering 38: 1697-1712.
  • Lou, M., Qian, G., Li, R. (2020). Experimental investigation of the suppression of vortex-induced vibration in four cylinders arranged in a square under different spacing ratios. Journal of Marine Science and Technology 25(2): 467-481.
  • Luo, F., Gao, C., Zhang, W. (2022). The key to suppress vortex-induced vibration: Stability of the structural mode. Journal of Fluids and Structures 113: 103692.
  • Modir, A., Goudarzi, N. (2019). Experimental investigation of Reynolds number and spring stiffness effects on vortex induced vibrations of a rigid circular cylinder. European Journal of Mechanics-B/Fluids 74: 34-40.
  • Rahman, M.A.A. (2015). Vortex-induced Vibration of Circular Cylindrical Structure with Different Aspect Ratios, Doktora Tezi.
  • Sumer, B.M., Fredsøe, J. (2006). Advanced Series on Ocean Engineering, Volume 26: Hydrodynamics around Cylindrical Structures (Revised Edition). In World Scientific, Vol. 33, Issue 1.
  • UM News Service, University of Michigan - A new renewable energy concept (2008). Erişim tarihi: 05.04.2024, https://www.youtube.com/watch?v=jcyM3c5ylSU ‘den alınmıştır.
  • Wang, C., Huang, Z., Hua, X., He, X., Zhou, S., Chen, Z. (2022). Aerodynamic mechanism of triggering and suppression of vortex-induced vibrations for a triple-box girder. Journal of Wind Engineering and Industrial Aerodynamics 227: 105051.
  • Williamson, C.H., Govardhan, R. (2004). Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36: 413-455.
  • Yexuan, M., Zhiyou, S. ve Wanhai, X. (2022). Study on vortex-induced vibration suppression of marine riser based on energy transfer. Chinese Journal of Theoretical and Applied Mechanics 54(4): 901-911.
  • Zdravkovich, M.M. (1997). Flow around circular cylinders: Volume 2: Applications (Vol. 2), Oxford university press.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Maritime Engineering (Other)
Journal Section Research Article
Authors

Aytekin Duranay 0000-0002-9551-3508

Early Pub Date July 24, 2024
Publication Date September 1, 2024
Submission Date April 25, 2024
Acceptance Date June 10, 2024
Published in Issue Year 2024 Volume: 10 Issue: 3

Cite

APA Duranay, A. (2024). Girdap Kaynaklı Titreşimlerle Tahrik Olan Su Pompası: Türkiye Akarsularında Potansiyel ve Performans Değerlendirmesi. Turkish Journal of Maritime and Marine Sciences, 10(3), 180-193. https://doi.org/10.52998/trjmms.1473474

Creative Commons Lisansı

This Journal is licensed with Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0).