Araştırma Makalesi
BibTex RIS Kaynak Göster

CORRELATION PROFILES OF THE ACCUMULATED METALS IN SEAWATER, SEDIMENT AND Pachygrapsus marmoratus (Fabricius) TISSUES IN BLACK SEA (ORDU, TURKEY)

Yıl 2018, , 187 - 195, 15.10.2018
https://doi.org/10.23902/trkjnat.446927

Öz

Bu çalışma, bazı metallerin (Al, As, Cd, Cr, Cu, Fe,
Mn, Ni, Pb ve Zn) Karadeniz (Ordu, Türkiye) kıyısı boyunca dere ve evsel atık
bölgelerine yakın noktalardan örnekleme yapılmış mermer yengeci Pachygrapsus marmoratus (Fabricius)’un
dış iskelet, solungaç, hepatopankreas ve kas dokularındaki birikim
ilişkilerinini etkileşimlerini araştırmak amacıyla yapılmıştır. Karadeniz
boyunca 28 km'lik bir kıyı şeridini kapsayan çalışma alanı
41°03'46.42"-41°07'42.35"N enlemleri ve 37°28'45.63"-37°41'15.29"E
boylamları arasındadır. Numunelerin metal
içerikleri indüktif eşleşmiş plazma - optik emisyon spektrometrisi (ICP-OES)
tekniği ile analiz edilmiştir. Elde edilen sonuçlar birlikte
değerlendirildiğinde, sedimentte
Fe>Al>Mn>Zn>Cr>Pb>Cu>As>Ni>Cd, suda Fe>Mn>Cr>As>Cd
ve yengeç dokularında Al>Fe>Cu>Mn>Zn şeklinde gözlenmiştir. Yengeç
örneklerinde, tüm metallerin dokularda birikim miktarının sırası
solungaç>dış iskelet>hepatopankreas>kas şeklindedir.
Al ve
Fe, sediment ve yengeç dokularında baskın metaller iken, deniz suyu örneklerinde
Al tespit edilmemiştir.
Sediment, su ve yengeç
dokularında birikimin etkileşimini ortaya koymak için bir korelasyon testi
yapılmıştır.
Metal-metal etkileşimleri ve bunların birlikte birikimi
korelasyon testi ile tespit edilmiştir. Yengeç dokularında gözlenen, ancak
deniz suyu ve sedimentte bulunmayan bu etkileşimler çalışmanın temel noktasını
oluşturmuştur. Metal-metal etkileşimleri arasında
en fazla anlamlı korelasyon solungaç ve dış iskelette gözlenmiştir. Ayrıca,
solungaçlarda ve dış iskeletlerde metal konsantrasyonları daha yüksek
bulunmuştur. Dış iskelette Mn-Al (r=0,954, korelasyon p<0,001), solungaçta
Al-Fe (r=0,849, korelasyon p<0,001), Mn-Zn (r=0,854, korelasyon p<0,001),
hepatopankreasta Al-Zn (r=0,882 korelasyon p<0,001) arasında kuvvetli
korelasyonlar tespit edilmiştir.
Hepatopankreasta Zn-Cu arasında ise
orta dereceli bir korelasyon bulunmuştur. Bu metal-metal etkileşimleri metallothionein
aktivitesinin bir sonucu olabilir. Sediment örnekleri ve yengeç dokuları
arasında anlamlı ilişki bulunamamıştır (korelasyon p>0,05). Hatta sonuçlar
göstermiştir ki deniz suyu ve sedimentindeki metaller, dokudaki birikime direkt
dönüşmemiştir. Bu sonuç P. marmoratus'un
dokularındaki metal miktarının çevresel kontaminasyonu yansıtmadığını
göstermektedir ve aynı zamanda sediment sonuçlarının deniz suyu ve yengeç
dokularından daha fazla metal birikimi miktarını gösterdiği tespit edilmiştir.

Kaynakça

  • 1. Alcorlo, P., Otero, M., Crehuet, M., Baltanás, A. & Montes, C. 2006. The use of the red swamp crayfish (Procambarus clarkii, Girard) as indicator of the bioavailability of heavy metals in environmental monitoring in the River Guadiamar (SW, Spain). Science of the Total Environment, 366: 380-390.
  • 2. Alexopoulos, E., McCrohan, C.R., Powell, J.J., Jugdaohsingh, R. & White, K.N. 2003. Bioavailability and toxicity of freshly neutralized aluminium to the freshwater crayfish. Pacifastacus leniusculus.Archives of Environmental Contamination and Toxicology, 45(4): 509-514.
  • 3. Álvaroa, N.V., Neto, A.I., Coutoa, R.P., Azevedo, J.M.N. & Rodrigues, A.S. 2016. Crabs tell the difference – Relating trace metal content with land use and landscape attributes. Chemosphere, 144: 1377-1383.
  • 4. Anderson, M.B., Preslan, J.E., Jolibois, L., Bollinger, J.E. & George, W.J. 1997. Bioaccumulation of lead nitrate in red swamp crayfish (Procambarus clarkii). Journal of Hazardous Materials, 54:15-29.
  • 5. Arya, S., Trivedi, J.N. & Vachhrajani, K.D. 2014. Brachyuran crabs as a biomonitoring tool: a conceptual framework for chemical pollution assessment. International Research Journal of Environment Sciences, 3(1): 49-57.
  • 6. Altas, L. & Büyükgüngör, H. 2007. Heavy metal pollution in the Black Sea shore and offshore of Turkey. Environmental Geology, 52: 469-476.
  • 7. Bervoets, L., Blust, R. & Verheyen, R. 2001. Accumulation of metals in the tissues of three Spined Stickelback (Gastrosteus aculeatus) from natural fresh waters. Ecotoxicology and Environmental Safety, 48(2): 117-127.
  • 8. Bochenek, I., Protasowicki, M. & Brucka-Jastrzębska, E. 2008. Concentrations of Cd, Pb, Zn, and Cu in roach Rutilus rutilus (L.) from the lower reaches of the Oder River, and their correlation with concentrations of heavy metals in bottom sediments collected in the same area. Archives of Polish Fisheries, 16: 21-36.
  • 9. Bresler, V., Abelson, A., Fishelson, L., Feldstein, T., Rosenfeld, M. & Mokady, O. 2003. Marine molluscs in environmental monitoring. Helgoland Maine Research, 57: 157-165.
  • 10. Cannicci, S., Paula, J. & Vannini, M. 1999. Activity pattern and spatial strategy in Pachygrapsus marmoratus (Decapoda: Grapsidae) from Mediterranean and Atlantic shores. Marine Biology, 133: 429-435.
  • 11. Chagas, G.C., Brossi-Garcia, A.L., Menegário, A.A., Franchi, M., Carlos, A., Pião, S. & Govone, J.S. 2009. Use of the Freshwater Crab Trichodactylus fluviatilis to Biomonitoring Al and Mn Contamination in River Water. HOLOS Environment, 9(2): 289-300.
  • 12. Chua, A.C.G., Graham, R.M., Trinder, D. & Olynyk, J.K. 2007. The regulation of cellular iron metabolism. Critical Reviews in Clinical Laboratory Sciences, 44: 413-459.
  • 13. Cohen, C.K., Fox, T.C., Garvin, D.F. & Kochian, L.V. 1998. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiology, 116: 1063-1072.
  • 14. Fikirdeşici Ergen, Ş., Üçüncü Tunca, E., Ozkan, A.D., Ölmez, T.T., Acaröz, E., Altındağ, A., Tekinay, T. & Tunca, E. 2015. Interactions between metals accumulated in the narrow-clawed crayfish Astacus leptodactylus (Eschscholtz, 1823) in Dikilitaş Lake, Turkey. Chemistry Ecology, 31: 455-465.
  • 15. Filazi, A., Baskaya, R., Kum, C. & Hismiogullari, S.E. 2003. Metal concentrations in tissues of the Black Sea fish Mugil auratus from Sinop-Icliman, Turkey. Human & Experimental Toxicology, 22: 85-87.
  • 16. Guner, U. 2007. Freshwater crayfish Astacus leptodactylus (Eschscholtz, 1823) accumulates and depurates copper. Environmental Monitoring Assessment, 133(1-3): 365-369.
  • 17. Hung, T.C., Meng, P.J., Han, B.C., Chuang, A. & Huang, C.C. 2001. Trace metals indifferent species of mollusca, water and sediments from Taiwan coastal area. Chemosphere, 44: 833-841.
  • 18. Kramer, U., Talke, I.N. & Hanikenne, M. 2007. Transition metal transport. FEBS Letters, 581: 2263-2272.
  • 19. Kasmin, S. 2010. Enforcing ship-based marine pollution for cleaner sea in the strait of malacca. Environmental Asia, 3: 61-65.
  • 20. Kır, I. & Tumantozlu, H. 2012. Karacaören-II Baraj Gölü'ndeki su, sediment ve sazan (Cyprinus carpio) örneklerinde bazı ağır metal birikiminin incelenmesi. Ekoloji Dergisi, 21(82): 65-70.
  • 21. Kurun, A., Balkıs, N., Erkan, M., Balkıs, H., Aksu, A. & Ersan, M.S. 2010. Total metal levels in crayfish Astacus leptodactylus (Eschscholtz, 1823), and surface sediments in Lake Terkos, Turkey. Environmental Monitoring Assessment, 169(1-4): 385-395.
  • 22. Makedonski, L., Peycheva, K. & Stancheva, M. 2017. Determination of heavy metals in selected black sea fish species. Food Control, 72: 313-318.
  • 23. Mendil, D. & Uluözlü, Ö.D. 2007. Determination of trace metal levels in sediment and five fish species from lakes in Tokat, Turkey. Food Chemistry, 101: 739-745.
  • 24. Menon, A.V., Chang, J. & Kim, J. 2016. Mechanisms of divalent metal toxicity in affective disorders. Toxicology, 339: 58-72.
  • 25. Moshtaghie, A.A. & Taher, M. 1993. Aluminium interference with iron absorption by everted gut sac. Journal of Islamic Academy of Sciences, 6(4): 277-281.
  • 26. Naji, A., Ismail, A., Kamrani, E. & Sohrabi, T. 2014. Correlation of MT levels in livers and gills with heavy metals in wild tilapia (Oreochromis mossambicus) from the Klang River, Malaysia. Bulletin of Environmental Contamination and Toxicology, 1-6.
  • 27. Nott, J.A. 1991. Cytology of pollutant metals in marine invertebrates: a review of micro-analytical application. Scanning microscopy, 5: 191-204.
  • 28. Núñez-Nogueira, G., Fernández-Bringas, L., Ordiano-Flores, A. & Gómez-Ponce, A. 2013. Ni accumulation and regulation after experimental exposure to a Cd, Pb, and Zn mixture in the Pacific White Shrimp Penaeus vannamei. Water Air Soil Pollution, 224: 1644.
  • 29. Oner, O. & Celik, A. 2011. Investigation of Some Pollution Parameters in Water and Sediment Samples Collected From the Lower Gediz River Basin. Ekoloji, 20(78): 48-52.
  • 30. Pandya, P.J. & Vachharajani, K.D. 2011. Life Under Ecological Stress: An Estuarine Case Study. Pp. 427-436. In: Gupta, V.K & Verma, A.K. (eds) Animal Diversity, Natural History and Conservation. Daya Publication House, New Delhi, India, xv + 480 pp.
  • 31. Parsa, Y., Nabavi, S.S.M.B., Nabavi, S.N. & Hosseini, M. 2014. Mercury Accumulation in Food Chain of Fish, Crab and Sea Bird from Arvand River. Journal of Marine Science: Research and Development, 4: 2.
  • 32. Phillips, D.J.H. & Rainbow, P.S. 1994. Biomonitoring of Trace Aquatic Contaminants, Chapman and Hall, London, 371 pp.
  • 33. Pourang, N., Dennis, J.H. & Ghourchian, H. 2005. Distribution of heavy metals in Penaeus Semisulcatus from Persian Gulf and possible role of metallothionein in their redistribution during storage. Environmental Monitoring Assessment, 100: 71-88.
  • 34. Quarles, C.D., Jr., Marcus, R.K. & Brumaghim, J.L. 2011. Competitive binding of Fe3+, Cr3+, and Ni2+ to transferrin. Journal of Biological Inorganic Chemistry, 16: 913-921.
  • 35. Rainbow, P.S. 2007. Trace metal bioaccumulation: Models, metabolic availability and toxicity. Environment International, 33: 576-582. 36. Siddon, C.E. & Witman J.D. 2004. Behavioral indirect interactions: Multiple predators effects and prey switching in the rocky subtidal. Ecology, 85: 2938-2945.
  • 37. Soedarini, B., Klaver, L., Roessink, I., Widianarko, B., van Straalen, N.M. & van Gestel, C.A.M. 2012. Copper kinetics and internal distribution in the marbled crayfish (Procambarus sp.). Chemosphere, 87(4): 333-338.
  • 38. Trivedi, J.N., Gadhavi, M.K. & Vachhrajani, K.D. 2012. Diversity and habitat preference of brachyuran crabs in Gulf of Kutch, Gujarat, India. Arthropods, 1: 13-23.
  • 39. Tunca, E., Üçüncü, E., Kurtuluş, B., Ozkan, A.D. & Atasagun, S. 2013a. Accumulation trends of metals and a metalloid in the freshwater crayfish Astacus leptodactylus from Lake Yeniçağa (Turkey). Chemistry and Ecology, 29(8): 754-769.
  • 40. Tunca, E., Ucuncu, E., Ozkan, A.D., Ergul-Ulger, Z., Cansızoğlu, A.E. & Tekinay, T. 2013b. Differences in the accumulation and distribution profile of heavy metals and metalloid between male and female crayfish (Astacus leptodactylus). Bulletin of Environmental Contamination and Toxicology, 90(5): 570-577.
  • 41. Tüzen M. 2003. Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chemistry, 80: 119-123.
  • 42. Ullah, A., Heng, S, Munis, M.F.H., Fahad, S. & Yang, X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany, 117: 28-40.
  • 43. Walton, R.C., McCrohan, C.R., Livens, F. & White, K.N. 2010. Trophic transfer of aluminium through an aquatic grazer-omnivore food chain. Aquatic Toxicology, 99: 93-99.
  • 44. Woodburn, K., Walton, R., McCrohan, C. & White, K. 2011. Accumulation and toxicity of aluminium-contaminated food in the freshwater crayfish, Pacifastacus leniusculus. Aquatic Toxicology, 105: 535-542.
  • 45. Yildiz, N. & Yener, G. 2010. Dating of the sediment accumulation rate, radioactive and heavy metal pollution in the Van Lake. Ekoloji, 19(77): 8.

CORRELATION PROFILES OF THE ACCUMULATED METALS IN SEAWATER, SEDIMENT AND Pachygrapsus marmoratus (Fabricius) TISSUES IN BLACK SEA (ORDU, TURKEY)

Yıl 2018, , 187 - 195, 15.10.2018
https://doi.org/10.23902/trkjnat.446927

Öz

This study was performed in
order to investigate the interactions of accumulation patterns of some metals
(Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in exoskeleton, gill, hepatopancreas
and muscle tissues of the marbled crab
Pachygrapsus
marmoratus
(Fabricius) sampled from near streams and domestic discharge
points along the coastal region of Black Sea along Ordu
in Turkey as well as patterns in sediment and seawater samples of the crab
sampling sites.
The study area covering a coastal stretch of 28
km along Black Sea
lies between the latitudes
41°03'46.42"-41°07'42.
35"N and longitudes
37°28'45.63"-37°41'15.29"E.
The metal contents of
the samples were analysed by the inductively coupled plasma - optical emission
spectrometry (ICP-OES) technique. The results showed that the accumulation
orders of the metals, in a descending order, were
Fe>Al>Mn>Zn>Cr>Pb>Cu
>As>Ni>Cd in the sediment, Fe>Mn>Cr>As>Cd in the water,
and Al>Fe>Cu>Mn>Zn in crab tissues when evaluated together
. In the crab samples, the amount of
the accumulation of all metals was ordered as
gills>exoskeleton>hepatopancreas>muscle. Al and Fe were the
predominant metals in the sediment and crab tissues but Al was not detected in
the seawater samples. A correlation test was performed to reveal the
interaction of accumulation in the sediment, water and crab tissues.
Metal-metal interactions and their co-accumulation was detected by
correlation test. These interactions which exist in the crab tissues but not in
the seawater and sediment were the main point of this study. Gills and
exoskeleton displayed the greatest number of significant correlations between
metal–metal interactions. Also, metal concentrations were found to be higher in
the gills and exoskeleton. Strong correlations between Mn-Al (r=0.954,
correlation p<0.001), in the exoskeleton, Al-Fe (r=0.849, correlation
p<0.001), Mn-Zn (r=0.854, correlation p<0.001) in the gills, Al-Zn
(r=0.882 correlation p<0.001) in the hepatopancreas were determined.
Moderate correlations between Zn-Cu were found in the hepatopancreas. These
metal-metal interactions may have been a result of metallothionein activity. No
significant relations were found between metal levels in sediment samples and
crap tissues (p>0.05). The results also showed that metals present in the
seawater and sediment did not directly transform to tissue accumulation. This
result showed that metal amounts in the tissues of the
P. marmoratus did not reflect environmental contaminations and that
sediment accumulated higher amounts of metals than seawater and tissues.

Kaynakça

  • 1. Alcorlo, P., Otero, M., Crehuet, M., Baltanás, A. & Montes, C. 2006. The use of the red swamp crayfish (Procambarus clarkii, Girard) as indicator of the bioavailability of heavy metals in environmental monitoring in the River Guadiamar (SW, Spain). Science of the Total Environment, 366: 380-390.
  • 2. Alexopoulos, E., McCrohan, C.R., Powell, J.J., Jugdaohsingh, R. & White, K.N. 2003. Bioavailability and toxicity of freshly neutralized aluminium to the freshwater crayfish. Pacifastacus leniusculus.Archives of Environmental Contamination and Toxicology, 45(4): 509-514.
  • 3. Álvaroa, N.V., Neto, A.I., Coutoa, R.P., Azevedo, J.M.N. & Rodrigues, A.S. 2016. Crabs tell the difference – Relating trace metal content with land use and landscape attributes. Chemosphere, 144: 1377-1383.
  • 4. Anderson, M.B., Preslan, J.E., Jolibois, L., Bollinger, J.E. & George, W.J. 1997. Bioaccumulation of lead nitrate in red swamp crayfish (Procambarus clarkii). Journal of Hazardous Materials, 54:15-29.
  • 5. Arya, S., Trivedi, J.N. & Vachhrajani, K.D. 2014. Brachyuran crabs as a biomonitoring tool: a conceptual framework for chemical pollution assessment. International Research Journal of Environment Sciences, 3(1): 49-57.
  • 6. Altas, L. & Büyükgüngör, H. 2007. Heavy metal pollution in the Black Sea shore and offshore of Turkey. Environmental Geology, 52: 469-476.
  • 7. Bervoets, L., Blust, R. & Verheyen, R. 2001. Accumulation of metals in the tissues of three Spined Stickelback (Gastrosteus aculeatus) from natural fresh waters. Ecotoxicology and Environmental Safety, 48(2): 117-127.
  • 8. Bochenek, I., Protasowicki, M. & Brucka-Jastrzębska, E. 2008. Concentrations of Cd, Pb, Zn, and Cu in roach Rutilus rutilus (L.) from the lower reaches of the Oder River, and their correlation with concentrations of heavy metals in bottom sediments collected in the same area. Archives of Polish Fisheries, 16: 21-36.
  • 9. Bresler, V., Abelson, A., Fishelson, L., Feldstein, T., Rosenfeld, M. & Mokady, O. 2003. Marine molluscs in environmental monitoring. Helgoland Maine Research, 57: 157-165.
  • 10. Cannicci, S., Paula, J. & Vannini, M. 1999. Activity pattern and spatial strategy in Pachygrapsus marmoratus (Decapoda: Grapsidae) from Mediterranean and Atlantic shores. Marine Biology, 133: 429-435.
  • 11. Chagas, G.C., Brossi-Garcia, A.L., Menegário, A.A., Franchi, M., Carlos, A., Pião, S. & Govone, J.S. 2009. Use of the Freshwater Crab Trichodactylus fluviatilis to Biomonitoring Al and Mn Contamination in River Water. HOLOS Environment, 9(2): 289-300.
  • 12. Chua, A.C.G., Graham, R.M., Trinder, D. & Olynyk, J.K. 2007. The regulation of cellular iron metabolism. Critical Reviews in Clinical Laboratory Sciences, 44: 413-459.
  • 13. Cohen, C.K., Fox, T.C., Garvin, D.F. & Kochian, L.V. 1998. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiology, 116: 1063-1072.
  • 14. Fikirdeşici Ergen, Ş., Üçüncü Tunca, E., Ozkan, A.D., Ölmez, T.T., Acaröz, E., Altındağ, A., Tekinay, T. & Tunca, E. 2015. Interactions between metals accumulated in the narrow-clawed crayfish Astacus leptodactylus (Eschscholtz, 1823) in Dikilitaş Lake, Turkey. Chemistry Ecology, 31: 455-465.
  • 15. Filazi, A., Baskaya, R., Kum, C. & Hismiogullari, S.E. 2003. Metal concentrations in tissues of the Black Sea fish Mugil auratus from Sinop-Icliman, Turkey. Human & Experimental Toxicology, 22: 85-87.
  • 16. Guner, U. 2007. Freshwater crayfish Astacus leptodactylus (Eschscholtz, 1823) accumulates and depurates copper. Environmental Monitoring Assessment, 133(1-3): 365-369.
  • 17. Hung, T.C., Meng, P.J., Han, B.C., Chuang, A. & Huang, C.C. 2001. Trace metals indifferent species of mollusca, water and sediments from Taiwan coastal area. Chemosphere, 44: 833-841.
  • 18. Kramer, U., Talke, I.N. & Hanikenne, M. 2007. Transition metal transport. FEBS Letters, 581: 2263-2272.
  • 19. Kasmin, S. 2010. Enforcing ship-based marine pollution for cleaner sea in the strait of malacca. Environmental Asia, 3: 61-65.
  • 20. Kır, I. & Tumantozlu, H. 2012. Karacaören-II Baraj Gölü'ndeki su, sediment ve sazan (Cyprinus carpio) örneklerinde bazı ağır metal birikiminin incelenmesi. Ekoloji Dergisi, 21(82): 65-70.
  • 21. Kurun, A., Balkıs, N., Erkan, M., Balkıs, H., Aksu, A. & Ersan, M.S. 2010. Total metal levels in crayfish Astacus leptodactylus (Eschscholtz, 1823), and surface sediments in Lake Terkos, Turkey. Environmental Monitoring Assessment, 169(1-4): 385-395.
  • 22. Makedonski, L., Peycheva, K. & Stancheva, M. 2017. Determination of heavy metals in selected black sea fish species. Food Control, 72: 313-318.
  • 23. Mendil, D. & Uluözlü, Ö.D. 2007. Determination of trace metal levels in sediment and five fish species from lakes in Tokat, Turkey. Food Chemistry, 101: 739-745.
  • 24. Menon, A.V., Chang, J. & Kim, J. 2016. Mechanisms of divalent metal toxicity in affective disorders. Toxicology, 339: 58-72.
  • 25. Moshtaghie, A.A. & Taher, M. 1993. Aluminium interference with iron absorption by everted gut sac. Journal of Islamic Academy of Sciences, 6(4): 277-281.
  • 26. Naji, A., Ismail, A., Kamrani, E. & Sohrabi, T. 2014. Correlation of MT levels in livers and gills with heavy metals in wild tilapia (Oreochromis mossambicus) from the Klang River, Malaysia. Bulletin of Environmental Contamination and Toxicology, 1-6.
  • 27. Nott, J.A. 1991. Cytology of pollutant metals in marine invertebrates: a review of micro-analytical application. Scanning microscopy, 5: 191-204.
  • 28. Núñez-Nogueira, G., Fernández-Bringas, L., Ordiano-Flores, A. & Gómez-Ponce, A. 2013. Ni accumulation and regulation after experimental exposure to a Cd, Pb, and Zn mixture in the Pacific White Shrimp Penaeus vannamei. Water Air Soil Pollution, 224: 1644.
  • 29. Oner, O. & Celik, A. 2011. Investigation of Some Pollution Parameters in Water and Sediment Samples Collected From the Lower Gediz River Basin. Ekoloji, 20(78): 48-52.
  • 30. Pandya, P.J. & Vachharajani, K.D. 2011. Life Under Ecological Stress: An Estuarine Case Study. Pp. 427-436. In: Gupta, V.K & Verma, A.K. (eds) Animal Diversity, Natural History and Conservation. Daya Publication House, New Delhi, India, xv + 480 pp.
  • 31. Parsa, Y., Nabavi, S.S.M.B., Nabavi, S.N. & Hosseini, M. 2014. Mercury Accumulation in Food Chain of Fish, Crab and Sea Bird from Arvand River. Journal of Marine Science: Research and Development, 4: 2.
  • 32. Phillips, D.J.H. & Rainbow, P.S. 1994. Biomonitoring of Trace Aquatic Contaminants, Chapman and Hall, London, 371 pp.
  • 33. Pourang, N., Dennis, J.H. & Ghourchian, H. 2005. Distribution of heavy metals in Penaeus Semisulcatus from Persian Gulf and possible role of metallothionein in their redistribution during storage. Environmental Monitoring Assessment, 100: 71-88.
  • 34. Quarles, C.D., Jr., Marcus, R.K. & Brumaghim, J.L. 2011. Competitive binding of Fe3+, Cr3+, and Ni2+ to transferrin. Journal of Biological Inorganic Chemistry, 16: 913-921.
  • 35. Rainbow, P.S. 2007. Trace metal bioaccumulation: Models, metabolic availability and toxicity. Environment International, 33: 576-582. 36. Siddon, C.E. & Witman J.D. 2004. Behavioral indirect interactions: Multiple predators effects and prey switching in the rocky subtidal. Ecology, 85: 2938-2945.
  • 37. Soedarini, B., Klaver, L., Roessink, I., Widianarko, B., van Straalen, N.M. & van Gestel, C.A.M. 2012. Copper kinetics and internal distribution in the marbled crayfish (Procambarus sp.). Chemosphere, 87(4): 333-338.
  • 38. Trivedi, J.N., Gadhavi, M.K. & Vachhrajani, K.D. 2012. Diversity and habitat preference of brachyuran crabs in Gulf of Kutch, Gujarat, India. Arthropods, 1: 13-23.
  • 39. Tunca, E., Üçüncü, E., Kurtuluş, B., Ozkan, A.D. & Atasagun, S. 2013a. Accumulation trends of metals and a metalloid in the freshwater crayfish Astacus leptodactylus from Lake Yeniçağa (Turkey). Chemistry and Ecology, 29(8): 754-769.
  • 40. Tunca, E., Ucuncu, E., Ozkan, A.D., Ergul-Ulger, Z., Cansızoğlu, A.E. & Tekinay, T. 2013b. Differences in the accumulation and distribution profile of heavy metals and metalloid between male and female crayfish (Astacus leptodactylus). Bulletin of Environmental Contamination and Toxicology, 90(5): 570-577.
  • 41. Tüzen M. 2003. Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chemistry, 80: 119-123.
  • 42. Ullah, A., Heng, S, Munis, M.F.H., Fahad, S. & Yang, X. 2015. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environmental and Experimental Botany, 117: 28-40.
  • 43. Walton, R.C., McCrohan, C.R., Livens, F. & White, K.N. 2010. Trophic transfer of aluminium through an aquatic grazer-omnivore food chain. Aquatic Toxicology, 99: 93-99.
  • 44. Woodburn, K., Walton, R., McCrohan, C. & White, K. 2011. Accumulation and toxicity of aluminium-contaminated food in the freshwater crayfish, Pacifastacus leniusculus. Aquatic Toxicology, 105: 535-542.
  • 45. Yildiz, N. & Yener, G. 2010. Dating of the sediment accumulation rate, radioactive and heavy metal pollution in the Van Lake. Ekoloji, 19(77): 8.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Araştırma Makalesi/Research Article
Yazarlar

Şeyda Fikirdeşici Ergen 0000-0002-4623-1256

Ahmet Altındağ

Kuddusi Karaboduk

Levent Biler

Evren Tunca

Yayımlanma Tarihi 15 Ekim 2018
Gönderilme Tarihi 23 Temmuz 2018
Kabul Tarihi 14 Ekim 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Fikirdeşici Ergen, Ş., Altındağ, A., Karaboduk, K., Biler, L., vd. (2018). CORRELATION PROFILES OF THE ACCUMULATED METALS IN SEAWATER, SEDIMENT AND Pachygrapsus marmoratus (Fabricius) TISSUES IN BLACK SEA (ORDU, TURKEY). Trakya University Journal of Natural Sciences, 19(2), 187-195. https://doi.org/10.23902/trkjnat.446927
AMA Fikirdeşici Ergen Ş, Altındağ A, Karaboduk K, Biler L, Tunca E. CORRELATION PROFILES OF THE ACCUMULATED METALS IN SEAWATER, SEDIMENT AND Pachygrapsus marmoratus (Fabricius) TISSUES IN BLACK SEA (ORDU, TURKEY). Trakya Univ J Nat Sci. Ekim 2018;19(2):187-195. doi:10.23902/trkjnat.446927
Chicago Fikirdeşici Ergen, Şeyda, Ahmet Altındağ, Kuddusi Karaboduk, Levent Biler, ve Evren Tunca. “CORRELATION PROFILES OF THE ACCUMULATED METALS IN SEAWATER, SEDIMENT AND Pachygrapsus Marmoratus (Fabricius) TISSUES IN BLACK SEA (ORDU, TURKEY)”. Trakya University Journal of Natural Sciences 19, sy. 2 (Ekim 2018): 187-95. https://doi.org/10.23902/trkjnat.446927.
EndNote Fikirdeşici Ergen Ş, Altındağ A, Karaboduk K, Biler L, Tunca E (01 Ekim 2018) CORRELATION PROFILES OF THE ACCUMULATED METALS IN SEAWATER, SEDIMENT AND Pachygrapsus marmoratus (Fabricius) TISSUES IN BLACK SEA (ORDU, TURKEY). Trakya University Journal of Natural Sciences 19 2 187–195.
IEEE Ş. Fikirdeşici Ergen, A. Altındağ, K. Karaboduk, L. Biler, ve E. Tunca, “CORRELATION PROFILES OF THE ACCUMULATED METALS IN SEAWATER, SEDIMENT AND Pachygrapsus marmoratus (Fabricius) TISSUES IN BLACK SEA (ORDU, TURKEY)”, Trakya Univ J Nat Sci, c. 19, sy. 2, ss. 187–195, 2018, doi: 10.23902/trkjnat.446927.
ISNAD Fikirdeşici Ergen, Şeyda vd. “CORRELATION PROFILES OF THE ACCUMULATED METALS IN SEAWATER, SEDIMENT AND Pachygrapsus Marmoratus (Fabricius) TISSUES IN BLACK SEA (ORDU, TURKEY)”. Trakya University Journal of Natural Sciences 19/2 (Ekim 2018), 187-195. https://doi.org/10.23902/trkjnat.446927.
JAMA Fikirdeşici Ergen Ş, Altındağ A, Karaboduk K, Biler L, Tunca E. CORRELATION PROFILES OF THE ACCUMULATED METALS IN SEAWATER, SEDIMENT AND Pachygrapsus marmoratus (Fabricius) TISSUES IN BLACK SEA (ORDU, TURKEY). Trakya Univ J Nat Sci. 2018;19:187–195.
MLA Fikirdeşici Ergen, Şeyda vd. “CORRELATION PROFILES OF THE ACCUMULATED METALS IN SEAWATER, SEDIMENT AND Pachygrapsus Marmoratus (Fabricius) TISSUES IN BLACK SEA (ORDU, TURKEY)”. Trakya University Journal of Natural Sciences, c. 19, sy. 2, 2018, ss. 187-95, doi:10.23902/trkjnat.446927.
Vancouver Fikirdeşici Ergen Ş, Altındağ A, Karaboduk K, Biler L, Tunca E. CORRELATION PROFILES OF THE ACCUMULATED METALS IN SEAWATER, SEDIMENT AND Pachygrapsus marmoratus (Fabricius) TISSUES IN BLACK SEA (ORDU, TURKEY). Trakya Univ J Nat Sci. 2018;19(2):187-95.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.