Araştırma Makalesi
BibTex RIS Kaynak Göster

GERÇEK VE TAM ZAMANLI TUZ STRESİ KOŞULLARINDA ÇELTİKDE (Oryza sativa L.) DEĞİŞKEN KÖK ANATOMİSİ ÖZELLİKLERİ VE TUZA DAYANIKLI ÇELTİK ISLAHINA DÖNÜK YENİ ANATOMİK SELEKSİYON KARAKTERLERİNİN TESPİTİ

Yıl 2016, Cilt: 17 Sayı: 2, 87 - 104, 15.12.2016

Öz

Kök anatomisinin tuz şartlarında kullanılabilirliğine dair bilgiler eksiktir ve bu anlamda etkin anatomik seleksiyon karakterlerinin tespit edilmesi, çalışmanın esas amacını oluşturmaktadır. Bunun için 31 değişik çeltik çeşidinin (verim değerlerine göre “En iyi”den “en düşük”e kadar) tuz şartları ve kontrol şartlarında, çimlenmeden hasada kadar, karşılıklı olarak kök anatomik özellikleri karşılaştırılmış ve detaylı anatomik özellikleri çıkarılmıştır. İlaveten histokimyasal yöntemlerle apoplastik yapılar araştırılmıştır. Si elementi değerleri, anatomik değişken değerleri, plastisite oranları, plastisite eğilimleri ve her grubun tuz stresi altındaki stratejik anatomik değişim yönelimleri tespit edilmiştir. Sonuçta; koruyucu anatomik karakterlerin “En iyi” grupta ya aynı kaldığı (kontroldeki gibi) ya da kısmen iyi yönde artış gösterdiği, diğer gruplarda ise aynı kaldığı (kontroldeki gibi) ya da daha kötü yönde değişim gösterdiği tespit edilmiştir. Anatomik plastisite özelliğinin temelde apoplastik bariyer karakterleri ile doğrudan ilişkili olduğu ortaya çıkarılmıştır. Her ne kadar tüm çeşitlerde tuz stresi altında az ya da çok anatomik değişkenlik görülse de en önde gelen anatomik karakterler şunlardır: (1) hücre boyutları, (2) Si varlığı, (3) Si birikim şekli, (4) Si’un kök stelar kısma doğru dağılımı, (5) ksilem ark yapısı, (6) apoplastik bariyerlerin lignifikasyon-suberinizasyon özellikleri ve dereceleri, (7) zamk ve fenolik içerikli idioblastik hücrelerin varlığı/yokluğu, (8) orta derecede anatomik değişkenlik. Özetle; tuzlu ve normal şartlar altında koruyucu modifikasyonlarını en stabil tutan çeşitlerin, seleksiyon ve ıslah açısından en fazla dikkate değer olduğu tespit edilmiştir.

Kaynakça

  • Armstrong, J. & Armstrong, W. 2005. Rice: Sulfide-induced Barriers to Root Radial Oxygen Loss, Fe2+ and Water Uptake, and Lateral root Emergence. Annales of Botany, 96: 625–638.
  • Asch, F., Dingkuhn, M., Dorffling, K. & Miezan, K. 2000. Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica, 113: 109-118.
  • Ashraf, M. & Akram, N.A. 2009. Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnology Advances, 27: 744-752.
  • Ashraf, M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora, 199: 361–376.
  • Atwell, B.J., Paul, E., Kriedemann, C. & Turnbull, G.N. 1999. Plants in Action Adaptation in Nature, Performance in Cultivation, Part IV - Ecophysiology in natural and managed communities, Chapter 17 - Salt: an environmental stress, 17.2. Growth and cropping responses, 17.2.1 Annual plants.
  • (http://plantsinaction.science.uq.edu.au/edition1/?q=content/17-2-1-annual-plants) (Accessed on April 2015).
  • Aybeke, M. 2004. Trakya Bölgesi’nde Yetişen Bazı Orkide Türleri Üzerinde Anatomik Araştırmalar. Doktora tezi, Trakya Üniversitesi, Fen Bilimleri Enstitüsü, Edirne, 349s.
  • Aybeke, M. 2007. Pollen and Seed Morphology of Some Ophrys L. (Orchidaceae) Taxa, Journal of Plant Biology, 50(4): 387-395.
  • Aybeke, M. & H. Demiral. 2012. The salt-tolerant rice selection suitable for saline waste water irrigation in Ergene Basin. Trakya University Journal of Natural Science, 13(1). 27-45.
  • Aybeke, M. 2016. Selection of salt-resıstant rice genotypes using anatomical root data of several cultivars grown under real, full-season field conditions. Trakya University Journal of Natural Science, 17(1). 29-46.
  • Bualuang, F., Al-Azzawi, M.J. & Flowers, T.J. 2012. New screening technique for salinity resistance in rice (Oryza sativa L.) seedlings using bypass flow. Plant Cell and Environment, 35(6): 1099-1108.
  • Chaodong, Y., Zhang, X., Zhou, C. & Seago Jr., J.L. 2011. Root and stem anatomy and istochemistry of four grasses from the Jianghan Floodplain along the Yangtze River, China. Flora, 206: 653–661.
  • Chaodong, Y., Zhang, X., Li, J., Bao, M., Ni, D. & Seago Jr., J.L. 2014. Anatomy and Histochemistry of Roots and Shoots in Wild Rice (Zizania latifolia Griseb.). Journal of Botany, 1817-1827.
  • Chen, L. & Wanga, R. 2009. Anatomical and physiological divergences and compensatory effects in two Leymus chinensis (Poaceae) ecotypes in Northeast China. Agriculture, Ecosystems & Environment, 134 (1-2): 46-52.
  • Chen, W., Yao, X., Cai, K. & Chen, J. 2011. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research, 142: 67–76.
  • Clark, L.H. & Harris, W.H. 1981. Observations on the anatomy of rice (Oryza sativa L.). American Journal of Botany, 68 (2): 154–161.
  • Çelebioğlu, S. & Baytop, T. 1949. Bitkisel Tozların Tetkiki için Yeni Bir Reaktif, Farmakolog, 19: 301.
  • Enstone, D.E., Peterson, C.A. & Fengshan, M.A. 2003. Root Endodermis and Exodermis: Structure, Function, and Responses to the Environment. Journal of Plant Growth Regulation, 21: 335–351.
  • Fang, Liang-Jun, Xiao-Qin, F., Qun-Shan, Y., Tian, W., Zheng-Chao, W., Chen, X., Zhi-Kai, Z., Xing-Fu, Z. & Chui-Kang, F. 2007. Effects of P-Glycoprotein Inhibitor and Elicitor on the Salt Tolerance of Rice Seedlings. Journal of Integrative Plant Biology, 49(5): 588−597
  • Fleck, A.T., Thandar, N., Repenning, C., Stahl, F., Zahn, M. & Schenk, M.K. 2011. Silicon enhances suberization and lignification in roots of rice (Oryza sativa). Journal of Experimental Botany, 62(6): 2001–2011.
  • Fukai, S. & Cooper, M. 1995. Development of drought resistant cultivars using physiomorphological traits in rice. Field Crop Research, 40: 67–86
  • Hakim, M.A., Juraimi, A.S., Begum, M., Hanafi, M.M., Ismail, M.R. & Selamat, A. 2010. Effect of salt stress on germination and early seedling growth of rice (Oryza sativa L.). African Journal of Biotechnology, 9: 1911-1918.
  • Hashemi, A., Abdolzadeh, A. & Sadeghıpour, H.R. 2010. Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Science and Plant Nutrition, 56: 244–253.
  • Hattori, T., Inanaga, S., Tanimoto, E., Lux, A., Luxova, M., Sugimoto, Y. 2003. Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant and Cell Physiology, 44: 743–749.
  • Henry, A., Cal, A.J., Batoto, T.C., Torres, R.O. & Serraj, R. 2012. Root attributes affecting water uptake of rice (Oryza sativa) under drought. Journal of Experimental Botany, 63(13): 4751-4763.
  • Hwang, Yuan-Hsun & Shuh-Chun, Chen. 1995. Anatomical responses in Kandelia candel (L.) Druce seedlings growing in the presence of different concentrations of NaCl. Botanical Bulletin of Academia Sinica, 36: 181-188.
  • Kaya, C., Tuna, L. & Higgs, D. 2006. Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. Journal of Plant Nutrition, 29: 1469–1480.
  • Kotula, L., Ranathunge, K., Schreiber, L. & Steudle, E. 2009 Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. Journal of Experimental Botany, 60(7): 2155–2167.
  • Koyro, H.W. 2002. Ultrastructural Effects of Salinity in Higher Plants pp.139-157. In: André Läuchli A., U. Lüttge (eds.), Salinity: Environment - Plants - Molecules. Kluwer Academic Publishers, Netherlands, 489pp.
  • Krishnamurthy, P., Ranathunge, K., Franke, R., Prakash, H.S. Schreiber, L. & Mathew, M.K. 2009. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta, 230: 119–134.
  • Krishnamurthy, P., Ranathunge, K., Nayak, S., Schreiber L. & Mathew, M.K. 2011. Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.)., Journal of Experimental Botany, 62, 12, 4215–4228.
  • Läuchli, A., James, R.A., Huang, C.X., Cully M.Mc. & Munns, R. 2008. Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Plant Cell and Environment, 31: 1565–1574.
  • Lynch, J.P., Chimungu, J.G. & Brown, K.M. 2014. Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement. Journal of Experimental Botany, 65(21): 6155–6166.
  • Lynch, J.P. & Brown, K.M. 2012. New roots for agriculture: exploiting the root phenome. Philosophical Transactions of the Royal Society B: Biological Sciences, 367: 1598–1604.
  • Meyer, C.J., Seago, Jr. J.L. & Peterson, C.A. 2009. Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots. Annales of Botany, 1-16.
  • Moradi, F. & Ismail, A.M. 2007. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annales of Botany, 99: 1161-1173.
  • Mostajeran, A. & Rahimi-Eichi, V. 2008. Drought stress effects on root anatomical characteristics of rice cultivars (Oryza sativa L.). Annales of Botany, 99: 1161-1173.
  • Paridaa, A.K. & Das, A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60: 324–349.
  • Rajendran, K., Tester, M. & Roy, S.J. 2009. Quantifying the three main components of salinity tolerance in cereals. Plant Cell and Environment, 32: 237-249.
  • Rebouillat, J., Dievart, A., Verdeil, J.L., Escoute, J., Giese, G., Breitler, J.C., Gantet, P., Espeout, S., Guiderdoni, E. & Périn, C. 2009. Molecular Genetics of Rice Root Development. Rice, 2: 15–34
  • Sánchez-Aguayo, I., Rodrìguez-Galán, J.M., Garcìa, R., Torreblanca, J. & Pardo, J.M. 2004. Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants. Planta, 220: 278–285.
  • Schutzendubel, A. & Polle, A. 2002. Plant response to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53: 1351–1365.
  • Shigenori, M. & Nemoto, K. 1995. Morphology and anatomy of rice roots with special reference to coordination in organo-and histogenesis. In: F. Baluska et al. (ed.) Structure and Function of Roots. Kluwer Academic Publishers, City, pp. 75-86
  • Singh, A., Shamim, M.D. & Singh, K.N. 2013. Genotypic Variation in Root Anatomy, Starch Accumulation, and Protein Induction in Upland Rice (Oryza sativa) Varieties Under Water Stress. Agricultural Research, 2 (1): 24-30.
  • Singh, R.K. & Flowers, T.J. 2011. Physiology and molecular biology of the effects of salinity on rice, pp. 899-939. In: M. Pessarakli (ed.) Handbook of plant and crop stress, CRC Press, Taylor & Francis Group 3rd edition. DOI: 10.1201/b10329-44
  • Sobrado, M.A. 2007. Relationship of water transport to anatomical features in the mangrove Laguncularia racemosa grown under contrasting salinities. New Phytologist, 173: 584–591.
  • Soukup, A., Votrubova, O. & Cízková, H. 2002. Development of anatomical structure of roots of Phragmites australis. New Phytologist, 153: 277–287.
  • Soukup, A. 1997. Structural adaptations of common reed to flooded substrate and their changes evoked by eutrophication. Master Thesis, Charles University, Prague, 97p.
  • Suralta, R.R. & Yamauchi, A.2008. Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging. Environmental and Experimental Botany, 64: 75–82
  • Suralta, R.R., Inukai, Y. & Yamauchi, A. 2008. Genotypic variations in responses of lateral root development to transient moisture stresses in rice cultivars. Plant Production Science, 11(3): 324-335.
  • Sürek, H. 2002. Çeltik Tarımı. Hasad Yayıncılık, İstanbul, 240 s.
  • Votrubová, O., Soukopp, A., Pechácková, A. & Paul, J. 1997. Anatomy of common reed and its importance for survival in eutrophic habitats. Acta Universitatis Carolinae-Biologica, 41: 233–244.
  • Yamane, K., Kawasaki, M., Taniguchi, M. & Miyake, H. 2008. Differential effect of NaCl and polyethylene glycol on the ultrastructure of chloroplasts in rice seedlings. Journal of Plnat Physiology, 160: 573-575.
  • Yang, C.D., Zhang, X., Zhou, C.Y. & Seago Jr., J.L. 2011. Root and stem anatomy and histochemistry of four grasses from the Jianghan Floodplain along the Yangtze River, China. Flora, 206(7): 653–661

ROOT ANATOMICAL PLASTICITY IN RESPONSE TO SALT STRESS UNDER REAL AND FULL-SEASON FIELD CONDITIONS AND DETERMINATION OF NEW ANATOMIC SELECTION CHARACTERS FOR BREEDING SALT-RESISTANT RICE (Oryza sativa L.)

Yıl 2016, Cilt: 17 Sayı: 2, 87 - 104, 15.12.2016

Öz

Specific understanding of root anatomy plasticity under salt stress is lacking and requires creation of efficient screening techniques for stress condition s. To fill this gap, this study aimed to determine the anatomical plasticity in root chracteristics of 31 different rice cultivars (from ‘Best’ to ‘Low’ yielding) grown under real field conditions (saline and non-saline) from planting to harvesting and to reveal detailed root anatomical parameters that can be used to select and breed salt-tolerant rice. Anatomical and histochemical features of all cultivars and thin structures of the apoplastic barriers were investigated. The amount of silica (Si), 35 different anatomical characteristics, anatomical plasticity characteristics, plasticity rates, plasticity trends and changes and strategies of each group under saline and non-saline conditions were compared. The results showed that protective anatomical characters improved/remained equal to, and worsened/remained equal to those of the controls, in the ‘Best’ and other groups, respectively, from non-saline to saline conditions. Anatomical plasticity is essentially directly related to apoplastic barrier features. High genotypic variation was observed in root anatomy in all cultivars, but foremost traits were as follows: (1) cell size, (2) Si presence, (3) Si accumulation shape, (4) Si distribution towards root stele, (5) xylem arch features, (6) lignification-suberization properties in apoplastic barriers and their degrees, (7) presence/absence of idioblast cells filled with gummic and phenolic substances and (8) moderate anatomical plasticity. Cultivars with the most stabile anatomy under saline and non-saline conditions should be used to select and breed salt-resistant rice.

Kaynakça

  • Armstrong, J. & Armstrong, W. 2005. Rice: Sulfide-induced Barriers to Root Radial Oxygen Loss, Fe2+ and Water Uptake, and Lateral root Emergence. Annales of Botany, 96: 625–638.
  • Asch, F., Dingkuhn, M., Dorffling, K. & Miezan, K. 2000. Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica, 113: 109-118.
  • Ashraf, M. & Akram, N.A. 2009. Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnology Advances, 27: 744-752.
  • Ashraf, M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora, 199: 361–376.
  • Atwell, B.J., Paul, E., Kriedemann, C. & Turnbull, G.N. 1999. Plants in Action Adaptation in Nature, Performance in Cultivation, Part IV - Ecophysiology in natural and managed communities, Chapter 17 - Salt: an environmental stress, 17.2. Growth and cropping responses, 17.2.1 Annual plants.
  • (http://plantsinaction.science.uq.edu.au/edition1/?q=content/17-2-1-annual-plants) (Accessed on April 2015).
  • Aybeke, M. 2004. Trakya Bölgesi’nde Yetişen Bazı Orkide Türleri Üzerinde Anatomik Araştırmalar. Doktora tezi, Trakya Üniversitesi, Fen Bilimleri Enstitüsü, Edirne, 349s.
  • Aybeke, M. 2007. Pollen and Seed Morphology of Some Ophrys L. (Orchidaceae) Taxa, Journal of Plant Biology, 50(4): 387-395.
  • Aybeke, M. & H. Demiral. 2012. The salt-tolerant rice selection suitable for saline waste water irrigation in Ergene Basin. Trakya University Journal of Natural Science, 13(1). 27-45.
  • Aybeke, M. 2016. Selection of salt-resıstant rice genotypes using anatomical root data of several cultivars grown under real, full-season field conditions. Trakya University Journal of Natural Science, 17(1). 29-46.
  • Bualuang, F., Al-Azzawi, M.J. & Flowers, T.J. 2012. New screening technique for salinity resistance in rice (Oryza sativa L.) seedlings using bypass flow. Plant Cell and Environment, 35(6): 1099-1108.
  • Chaodong, Y., Zhang, X., Zhou, C. & Seago Jr., J.L. 2011. Root and stem anatomy and istochemistry of four grasses from the Jianghan Floodplain along the Yangtze River, China. Flora, 206: 653–661.
  • Chaodong, Y., Zhang, X., Li, J., Bao, M., Ni, D. & Seago Jr., J.L. 2014. Anatomy and Histochemistry of Roots and Shoots in Wild Rice (Zizania latifolia Griseb.). Journal of Botany, 1817-1827.
  • Chen, L. & Wanga, R. 2009. Anatomical and physiological divergences and compensatory effects in two Leymus chinensis (Poaceae) ecotypes in Northeast China. Agriculture, Ecosystems & Environment, 134 (1-2): 46-52.
  • Chen, W., Yao, X., Cai, K. & Chen, J. 2011. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research, 142: 67–76.
  • Clark, L.H. & Harris, W.H. 1981. Observations on the anatomy of rice (Oryza sativa L.). American Journal of Botany, 68 (2): 154–161.
  • Çelebioğlu, S. & Baytop, T. 1949. Bitkisel Tozların Tetkiki için Yeni Bir Reaktif, Farmakolog, 19: 301.
  • Enstone, D.E., Peterson, C.A. & Fengshan, M.A. 2003. Root Endodermis and Exodermis: Structure, Function, and Responses to the Environment. Journal of Plant Growth Regulation, 21: 335–351.
  • Fang, Liang-Jun, Xiao-Qin, F., Qun-Shan, Y., Tian, W., Zheng-Chao, W., Chen, X., Zhi-Kai, Z., Xing-Fu, Z. & Chui-Kang, F. 2007. Effects of P-Glycoprotein Inhibitor and Elicitor on the Salt Tolerance of Rice Seedlings. Journal of Integrative Plant Biology, 49(5): 588−597
  • Fleck, A.T., Thandar, N., Repenning, C., Stahl, F., Zahn, M. & Schenk, M.K. 2011. Silicon enhances suberization and lignification in roots of rice (Oryza sativa). Journal of Experimental Botany, 62(6): 2001–2011.
  • Fukai, S. & Cooper, M. 1995. Development of drought resistant cultivars using physiomorphological traits in rice. Field Crop Research, 40: 67–86
  • Hakim, M.A., Juraimi, A.S., Begum, M., Hanafi, M.M., Ismail, M.R. & Selamat, A. 2010. Effect of salt stress on germination and early seedling growth of rice (Oryza sativa L.). African Journal of Biotechnology, 9: 1911-1918.
  • Hashemi, A., Abdolzadeh, A. & Sadeghıpour, H.R. 2010. Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Science and Plant Nutrition, 56: 244–253.
  • Hattori, T., Inanaga, S., Tanimoto, E., Lux, A., Luxova, M., Sugimoto, Y. 2003. Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant and Cell Physiology, 44: 743–749.
  • Henry, A., Cal, A.J., Batoto, T.C., Torres, R.O. & Serraj, R. 2012. Root attributes affecting water uptake of rice (Oryza sativa) under drought. Journal of Experimental Botany, 63(13): 4751-4763.
  • Hwang, Yuan-Hsun & Shuh-Chun, Chen. 1995. Anatomical responses in Kandelia candel (L.) Druce seedlings growing in the presence of different concentrations of NaCl. Botanical Bulletin of Academia Sinica, 36: 181-188.
  • Kaya, C., Tuna, L. & Higgs, D. 2006. Effect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditions. Journal of Plant Nutrition, 29: 1469–1480.
  • Kotula, L., Ranathunge, K., Schreiber, L. & Steudle, E. 2009 Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. Journal of Experimental Botany, 60(7): 2155–2167.
  • Koyro, H.W. 2002. Ultrastructural Effects of Salinity in Higher Plants pp.139-157. In: André Läuchli A., U. Lüttge (eds.), Salinity: Environment - Plants - Molecules. Kluwer Academic Publishers, Netherlands, 489pp.
  • Krishnamurthy, P., Ranathunge, K., Franke, R., Prakash, H.S. Schreiber, L. & Mathew, M.K. 2009. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta, 230: 119–134.
  • Krishnamurthy, P., Ranathunge, K., Nayak, S., Schreiber L. & Mathew, M.K. 2011. Root apoplastic barriers block Na+ transport to shoots in rice (Oryza sativa L.)., Journal of Experimental Botany, 62, 12, 4215–4228.
  • Läuchli, A., James, R.A., Huang, C.X., Cully M.Mc. & Munns, R. 2008. Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Plant Cell and Environment, 31: 1565–1574.
  • Lynch, J.P., Chimungu, J.G. & Brown, K.M. 2014. Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement. Journal of Experimental Botany, 65(21): 6155–6166.
  • Lynch, J.P. & Brown, K.M. 2012. New roots for agriculture: exploiting the root phenome. Philosophical Transactions of the Royal Society B: Biological Sciences, 367: 1598–1604.
  • Meyer, C.J., Seago, Jr. J.L. & Peterson, C.A. 2009. Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots. Annales of Botany, 1-16.
  • Moradi, F. & Ismail, A.M. 2007. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Annales of Botany, 99: 1161-1173.
  • Mostajeran, A. & Rahimi-Eichi, V. 2008. Drought stress effects on root anatomical characteristics of rice cultivars (Oryza sativa L.). Annales of Botany, 99: 1161-1173.
  • Paridaa, A.K. & Das, A.B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60: 324–349.
  • Rajendran, K., Tester, M. & Roy, S.J. 2009. Quantifying the three main components of salinity tolerance in cereals. Plant Cell and Environment, 32: 237-249.
  • Rebouillat, J., Dievart, A., Verdeil, J.L., Escoute, J., Giese, G., Breitler, J.C., Gantet, P., Espeout, S., Guiderdoni, E. & Périn, C. 2009. Molecular Genetics of Rice Root Development. Rice, 2: 15–34
  • Sánchez-Aguayo, I., Rodrìguez-Galán, J.M., Garcìa, R., Torreblanca, J. & Pardo, J.M. 2004. Salt stress enhances xylem development and expression of S-adenosyl-L-methionine synthase in lignifying tissues of tomato plants. Planta, 220: 278–285.
  • Schutzendubel, A. & Polle, A. 2002. Plant response to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53: 1351–1365.
  • Shigenori, M. & Nemoto, K. 1995. Morphology and anatomy of rice roots with special reference to coordination in organo-and histogenesis. In: F. Baluska et al. (ed.) Structure and Function of Roots. Kluwer Academic Publishers, City, pp. 75-86
  • Singh, A., Shamim, M.D. & Singh, K.N. 2013. Genotypic Variation in Root Anatomy, Starch Accumulation, and Protein Induction in Upland Rice (Oryza sativa) Varieties Under Water Stress. Agricultural Research, 2 (1): 24-30.
  • Singh, R.K. & Flowers, T.J. 2011. Physiology and molecular biology of the effects of salinity on rice, pp. 899-939. In: M. Pessarakli (ed.) Handbook of plant and crop stress, CRC Press, Taylor & Francis Group 3rd edition. DOI: 10.1201/b10329-44
  • Sobrado, M.A. 2007. Relationship of water transport to anatomical features in the mangrove Laguncularia racemosa grown under contrasting salinities. New Phytologist, 173: 584–591.
  • Soukup, A., Votrubova, O. & Cízková, H. 2002. Development of anatomical structure of roots of Phragmites australis. New Phytologist, 153: 277–287.
  • Soukup, A. 1997. Structural adaptations of common reed to flooded substrate and their changes evoked by eutrophication. Master Thesis, Charles University, Prague, 97p.
  • Suralta, R.R. & Yamauchi, A.2008. Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging. Environmental and Experimental Botany, 64: 75–82
  • Suralta, R.R., Inukai, Y. & Yamauchi, A. 2008. Genotypic variations in responses of lateral root development to transient moisture stresses in rice cultivars. Plant Production Science, 11(3): 324-335.
  • Sürek, H. 2002. Çeltik Tarımı. Hasad Yayıncılık, İstanbul, 240 s.
  • Votrubová, O., Soukopp, A., Pechácková, A. & Paul, J. 1997. Anatomy of common reed and its importance for survival in eutrophic habitats. Acta Universitatis Carolinae-Biologica, 41: 233–244.
  • Yamane, K., Kawasaki, M., Taniguchi, M. & Miyake, H. 2008. Differential effect of NaCl and polyethylene glycol on the ultrastructure of chloroplasts in rice seedlings. Journal of Plnat Physiology, 160: 573-575.
  • Yang, C.D., Zhang, X., Zhou, C.Y. & Seago Jr., J.L. 2011. Root and stem anatomy and histochemistry of four grasses from the Jianghan Floodplain along the Yangtze River, China. Flora, 206(7): 653–661
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makalesi/Research Article
Yazarlar

Mehmet Aybeke

Yayımlanma Tarihi 15 Aralık 2016
Gönderilme Tarihi 26 Ekim 2015
Kabul Tarihi 12 Mayıs 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 17 Sayı: 2

Kaynak Göster

APA Aybeke, M. (2016). ROOT ANATOMICAL PLASTICITY IN RESPONSE TO SALT STRESS UNDER REAL AND FULL-SEASON FIELD CONDITIONS AND DETERMINATION OF NEW ANATOMIC SELECTION CHARACTERS FOR BREEDING SALT-RESISTANT RICE (Oryza sativa L.). Trakya University Journal of Natural Sciences, 17(2), 87-104.
AMA Aybeke M. ROOT ANATOMICAL PLASTICITY IN RESPONSE TO SALT STRESS UNDER REAL AND FULL-SEASON FIELD CONDITIONS AND DETERMINATION OF NEW ANATOMIC SELECTION CHARACTERS FOR BREEDING SALT-RESISTANT RICE (Oryza sativa L.). Trakya Univ J Nat Sci. Aralık 2016;17(2):87-104.
Chicago Aybeke, Mehmet. “ROOT ANATOMICAL PLASTICITY IN RESPONSE TO SALT STRESS UNDER REAL AND FULL-SEASON FIELD CONDITIONS AND DETERMINATION OF NEW ANATOMIC SELECTION CHARACTERS FOR BREEDING SALT-RESISTANT RICE (Oryza Sativa L.)”. Trakya University Journal of Natural Sciences 17, sy. 2 (Aralık 2016): 87-104.
EndNote Aybeke M (01 Aralık 2016) ROOT ANATOMICAL PLASTICITY IN RESPONSE TO SALT STRESS UNDER REAL AND FULL-SEASON FIELD CONDITIONS AND DETERMINATION OF NEW ANATOMIC SELECTION CHARACTERS FOR BREEDING SALT-RESISTANT RICE (Oryza sativa L.). Trakya University Journal of Natural Sciences 17 2 87–104.
IEEE M. Aybeke, “ROOT ANATOMICAL PLASTICITY IN RESPONSE TO SALT STRESS UNDER REAL AND FULL-SEASON FIELD CONDITIONS AND DETERMINATION OF NEW ANATOMIC SELECTION CHARACTERS FOR BREEDING SALT-RESISTANT RICE (Oryza sativa L.)”, Trakya Univ J Nat Sci, c. 17, sy. 2, ss. 87–104, 2016.
ISNAD Aybeke, Mehmet. “ROOT ANATOMICAL PLASTICITY IN RESPONSE TO SALT STRESS UNDER REAL AND FULL-SEASON FIELD CONDITIONS AND DETERMINATION OF NEW ANATOMIC SELECTION CHARACTERS FOR BREEDING SALT-RESISTANT RICE (Oryza Sativa L.)”. Trakya University Journal of Natural Sciences 17/2 (Aralık 2016), 87-104.
JAMA Aybeke M. ROOT ANATOMICAL PLASTICITY IN RESPONSE TO SALT STRESS UNDER REAL AND FULL-SEASON FIELD CONDITIONS AND DETERMINATION OF NEW ANATOMIC SELECTION CHARACTERS FOR BREEDING SALT-RESISTANT RICE (Oryza sativa L.). Trakya Univ J Nat Sci. 2016;17:87–104.
MLA Aybeke, Mehmet. “ROOT ANATOMICAL PLASTICITY IN RESPONSE TO SALT STRESS UNDER REAL AND FULL-SEASON FIELD CONDITIONS AND DETERMINATION OF NEW ANATOMIC SELECTION CHARACTERS FOR BREEDING SALT-RESISTANT RICE (Oryza Sativa L.)”. Trakya University Journal of Natural Sciences, c. 17, sy. 2, 2016, ss. 87-104.
Vancouver Aybeke M. ROOT ANATOMICAL PLASTICITY IN RESPONSE TO SALT STRESS UNDER REAL AND FULL-SEASON FIELD CONDITIONS AND DETERMINATION OF NEW ANATOMIC SELECTION CHARACTERS FOR BREEDING SALT-RESISTANT RICE (Oryza sativa L.). Trakya Univ J Nat Sci. 2016;17(2):87-104.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.