Araştırma Makalesi
BibTex RIS Kaynak Göster

TERPINOLENE IS AN EFFECTIVE ESSENTIAL OIL COMPOUND TO PROTECT Hordeum vulgare L. FROM Fusarium avenaceum (Fr.) Sacc.

Yıl 2022, Cilt: 23 Sayı: 1, 71 - 79, 15.04.2022
https://doi.org/10.23902/trkjnat.1000196

Öz

Fusarium avenaceum (Fr.) Sacc. is an important phytopathogen. Fight against F. avenaceum includes primarily fungicide usage. However, novel strategies are needed in a struggle with F. avenaceum. In this study, terpinolene was used against F. avenaceum as an antimicrobial agent, and the harmlessness of terpinolene was tested on two contrast barley genotypes, Hordeum vulgare L. cv. Cervoise and H. vulgare L. cv. Premium. Firstly, minimum inhibitory concentration (MIC) and half inhibitory concentration (IC50) were detected as 6 and 3 µg µL-1. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was informative about the effects of terpinolene on enniatin and zearalenone biosynthesis in F. avenaceum. Terpinolene leads to the potential decreased enniatin and zearalenone biosynthesis in F. avenaceum. However, no significant differences were recorded for gene expression of aurofusariun biosynthesis. In barley, electroconductivity (EC), catalase (CAT) activity, coupled restriction enzyme digestion-random amplification (CRED-RA), and qRT-PCR assays were tested. No significant ion leakage differences (p>0.05) were detected. Similarly, CAT activity and water loss rate (WLR) values in barley sets were not affected (p>0.05) by terpinolene treatment in majority of experiment sets. Relatively low levels of genomic template instability (75-85%) and epigenetics changes (11-20.6%) were recorded in barley due to terpinolene treatment. WRKY6, WRKY24, and WRKY41 expressions were not significantly changed. The findings showed that terpinolene could be accepted as a potential plant protective agent against phytopathogenic fungi. 

Destekleyen Kurum

İstanbul Yeni Yüzyil University

Proje Numarası

2020-02

Teşekkür

The authors are grateful to Dr. Ayşe Feyza Turan Dülger (İstanbul-Turkey) for providing H. vulgare L. primers.

Kaynakça

  • 1. Agus, H.H., Sarp, C. & Cemiloglu, M. 2018. Oxidative stress and mitochondrial impairment mediated apoptotic cell death induced by terpinolene in Schizosaccharomyces pombe. Toxicology Research, 7: 848-858.
  • 2. Alkan, M., Göre, M.E., Bayraktar, H. & Özer, G. 2019. Genetic variation of Fusarium spp. isolates associated with root and crown rot of winter wheat using retrotransposon-based iPBS assays. Uluslar Tarım Yaban Hayatı Bilim Dergisi, 5: 250-259.
  • 3. Arif, T., Bhosale, J.D., Kumar, N., Mandal, T.K., Bendre, R.S., Lavekar, G.S. & Dabur, R. 2009. Natural products–antifungal agents derived from plants. Journal of Asian Natural Products Research, 11: 621-638.
  • 4. Booth, C. & Spooner, B.M. 1984. Gibberella avenacea, teleomorph of Fusarium avenaceum, from stems of Pteridium aquilinum. Transactions of the British Mycological Society, 82(1): 178-180.
  • 5. Champeil, A., Fourbet, J.F., Doré, T. & Rossignol, L. 2004. Influence of cropping system on fusarium head blight and mycotoxin levels in winter wheat. Journal of Crop Protection, 23: 531-537.
  • 6. Chen, H., Wu, Q., Zhang, G., Wu, J., Zhu, F., Yang, H. & Zhuang, Y. 2019. Carbendazim-resistance of Gibberella zeae associated with fusarium head blight and its management in Jiangsu Province. China. Journal of Crop Protection, 124: 104866.
  • 7. Cho, U.H. & Park, J.O. 2000. Mercury-induced oxidative stress in tomato seedlings. Plant Science, 156: 1-9.
  • 8. Chung, W.H., Ishii, H., Nishimura, K., Ohshima, M., Iwama, T. & Yoshimatsu, H. 2008, Genetic analysis and PCR-based identification of major Fusarium species causing head blight on wheat in Japan. The Journal of Plant Pathology, 74: 364-374.
  • 9. Cook, R.J. 1967. Gibberella avenacea sp. n., perfect stage of Fusarium roseum f. sp. cerealis Avenaceum'. Phytopathology, 57(7): 732-736.
  • 10. da Cruz Cabral, L., Pinto, V.F. & Patriarca, A. 2013. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. International Journal of Food Microbiology, 166: 1-14.
  • 11. Daglia, M. 2012. Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23: 174-181.
  • 12. Dorman, H.D. & Deans, S.G. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88: 308-316.
  • 13. Dweba, C.C., Figlan, S., Shimelis, H.A., Motaung, T.E., Sydenham, S., Mwadzingeni, L. & Tsilo, T.J. 2017. Fusarium head blight of wheat: pathogenesis and control strategies. Journal of Crop Protection, 91: 114-122.
  • 14. Fandohan, P., Gbenou, J.D., Gnonlonfin, B., Hell, K., Marasas, W.F.O. & Wingfield, M.J. 2004. Effect of essential oils on the growth of Fusarium verticillioides and fumonisin contamination in corn. Journal of Agricultural and Food Chemistry, 52: 6824-6829.
  • 15. Gazdağlı, A., Sefer, Ö., Yörük, E., Varol, G., Teker, T. & Albayrak, G. 2018a. Investigation of camphor effects on Fusarium graminearum and F. culmorum at different molecular levels. Pathogens, 7: 90.
  • 16. Gazdağlı, A., Sefer, Ö., Yörük, E., Varol, G.İ. & Albayrak, G. 2018b. Investigation on the terpinolene effects in Fusarium graminearum and F. culmorum (at different molecular levels), pp. 33-42. In: Aina, A.T. & Demirçalı, A (eds) Academic studies in Science and Mathematics, Gece Kitaplığı, Türkiye, 65 pp. ISBN: 978-605-288-613-7.
  • 17. Geiser, D.M., Aoki, T., Bacon, C.W., Baker, S.E., Bhattacharyya, M.K., Brandt, M.E. et al. 2013. One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology, 103: 400-408.
  • 18. Goudjil, M., Ladjel, S., Bencheikh, S.E., Hammoya, F., Bensaci, M.B., Zighmi, S. & Mehani, M. 2016. Bioactivity of Artemisia herba alba essential oil against plant pathogenic fungi. Der Pharma Chemica, 8: 46-52.
  • 19. Gräfenhan, T., Patrick, S.K., Roscoe, M., Trelka, R., Gaba, D., Chan, J.M., McKendry, T., Clear, R.M. & Tittlemier, S.A. 2013. Fusarium damage in cereal grains from Western Canada. 1. Phylogenetic analysis of moniliformin-producing fusarium species and their natural occurrence in mycotoxin-contaminated wheat, oats, and rye. Journal of Agricultural and Food Chemistry, 61: 5425-5437.
  • 20. Gürel, F., Öztürk, N.Z., Yörük, E., Uçarlı, C. & Poyraz, N. 2016. Comparison of expression patterns of selected drought-responsive genes in barley (Hordeum vulgare L.) under shock-dehydration and slow drought treatments. Plant Growth Regulation, 80: 183-193.
  • 21. Harris, E.L.V. & Angal, S. 1989. Protein purification methods, IRL Press at Oxford University Press, Oxford, 336 pp.
  • 22. Irzykowska, L., Bocianowski, J. & Baturo-Cieśniewska, A. 2013. Association of mating-type with mycelium growth rate and genetic variability of Fusarium culmorum. Central European Journal of Biology, 8: 701-711.
  • 23. Hietaniemi, V., Ramo, S., Yli-Mattila, T., Jestoi, M., Peltonen, S., Kartio, M., Sievilainen, E., Koivisto, T. & Parikka, P. 2016. Updated survey of Fusarium species and toxins in finnish cereal grains. Food Additives & Contaminants: Part A, 33: 831-848.
  • 24. Ivic, D., Sever, Z. & Kuzmanovska, B. 2015. In vitro sensitivity of fusarium graminearum, F. avenaceum and F. verticillioides to carbendazim, tebuconazole, flutriafol, metconazole and prochloraz. Pesticides and Phytomedicine, 26: 35-42.
  • 25. Jestoi, M., Rokka, M., Yli-Mattila, T., Parikka, P., Rizzo, A. & Peltonen, K. 2004. Presence and concentrations of the Fusarium-related mycotoxins beauvericin, enniatins and moniliformin in finnish grain samples. Food Additives and Contaminants, 21: 794-802.
  • 26. Jurado, M., Marín, P., Magan, N. & González-Jaén, M.T. 2008. Relationship between solute and matric potential stress, temperature, growth, and FUM1 gene expression in two Fusarium verticillioides strains from Spain. Applied and Environmental Microbiology Journal, 74: 2032-2036.
  • 27. Kerényi, Z., Moretti, A., Waalwijk, C., Oláh, B. & Hornok, L. 2004. Mating type sequences in asexually reproducing Fusarium species. Applied and Environmental Microbiology Journal, 70: 4419-4423.
  • 28. Kopacki, M. & Wagner, A. 2006. Effect of some fungicides on mycelium growth of Fusarium avenaceum (Fr.) sacc. pathogenic to chrysanthemum (Dendranthema grandiflora Tzvelev). Agronomy Research, 4: 237-240.
  • 29. Kumar, P., Mishra, S., Kumar, A. & Sharma, A.K. 2016. Antifungal efficacy of plant essential oils against stored grain fungi of Fusarium spp. The Journal of Food Science and Technology, 53: 3725-3734.
  • 30. Lingan, K. 2018. Antifungal activity of Artemisia nilagirica essential oil from the western ghats nilgiris against food borne fungi. Applied Biochemistry and Microbiology, 2: 2-6.
  • 31. Livak, J.K. & Schmittgen, T.D. 2001. Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔCT method. Methods, 25: 402-408.
  • 32. Logrieco, A., Rizzo, A., Ferracane, R. & Ritieni, A. 2002. Occurrence of beauvericin and enniatins in wheat affected by Fusarium avenaceum head blight. Applied and Environmental Microbiology Journal, 68: 82-85.
  • 33. Lori, G.A., Sisterna, M.N., Sarandón, S.J., Rizzo, I. & Chidichimo, H. 2009. Fusarium head blight in wheat: impact of tillage and other agronomic practices under natural infection. Journal of Crop Protection, 28: 495-502.
  • 34. Lysøe, E., Harris, L.J., Walkowiak, S., Subramaniam, R., Divon, H.H., Riiser, E.S., Llorens, C., Gabaldón, T., Kistler, H.C., Jonkers, W., Kolseth, A.K., Nielsen, K.F., Thrane, U. & Frandsen, R.J. 2014. The genome of the generalist plant pathogen Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism. PLoS One, 9: e112703.
  • 35. Machado, A.K., Brown, N.A., Urban, M., Kanyuka, K. & Hammond‐Kosack, K.E. 2018. RNAi as an emerging approach to control fusarium head blight disease and mycotoxin contamination in cereals. Pest Management Science, 74: 790-799.
  • 36. Marin, S., Velluti, A., Ramos, A.J. & Sanchis, V. 2004. Effect of essential oils on zearalenone and deoxynivalenol production by Fusarium graminearum in non-sterilized maize grain. Food Microbiology, 21: 313-318.
  • 37. McMullen, M., Halley, S., Schatz, B., Meyer, S., Jordahl, J. & Ransom, J. 2008. Integrated strategies for fusarium head blight management in the United States. Cereal Research Communications, 36: 563-568.
  • 38. Miedaner, T., Cumagun, C.J.R. & Chakraborty, S. 2008. Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. Journal of Phytopathology, 156: 129-139.
  • 39. Nardemir, G., Aga, G., Arslan, E. & Erturk, F.A. 2015. Determination of genetic and epigenetic effects of glyphosate on Triticum aestivum with RAPD and CRED-RA techniques. Theoretical and Experimental Plant Physiology, 27: 131-139.
  • 40. Niu, C., Kebede, H., Auld, D.L., Woodward, J.E., Burow, G. & Wright, R.J. 2008. A safe inexpensive method to isolate high quality plant and fungal DNA in an open laboratory environment. African Journal of. Biotechnology, 7: 2818-2822.
  • 41. Orhan, D.D., Özçelik, B., Özgen, S. & Ergun, F. 2010. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiological Research, 165: 496-504.
  • 42. Panda, S.K., Chaudhury, I. & Khan, M.H. 2003. Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Plant Biology, 46: 289-294.
  • 43. Parry, D.W., Jenkins, P. & McLeod, L. 1995. Fusarium ear blight (scab) in small grain cereals -a review. Plant Pathology, 44: 207-238.
  • 44. Pasquali, M. & Migheli, Q. 2014. Genetic approaches to chemotype determination in type B-trichothecene producing Fusaria. The International Journal of Food Microbiology, 189: 164-182.
  • 45. Perczak, A., Gwiazdowska, D., Marchwińska, K., Juś, K., Gwiazdowski, R. & Waśkiewicz, A. 2019. Antifungal activity of selected essential oils against Fusarium culmorum and F. graminearum and their secondary metabolites in wheat seeds. Archives of Microbiology, 201: 1085-1097.
  • 46. Regnault-Roger, C., Vincent, C. & Arnason, J.T. 2012. Essential oils in insect control: low-risk products in a high-stakes world. The Annual Review of Entomology, 57: 405-424.
  • 47. Sefer, Ö., Yörük, E., Develi, E.S., Sezer, A.S. & Konukcu, Z. 2017a. Investigation of the effects of 2, 4-Dimethylpyrrole on Fusarium culmorum causal agent of head blight disease. International Journal of Secondary Metabolite, 4: 103-113.
  • 48. Sefer, Ö., Yörük, E., Develi, E.S., Zümrüt, I.M., Sezer, A.S. & Konukçu, Z. 2017b. Effects of Kaempferol on Growth and Toxin Production of Head Blight Agent Fusarium culmorum. Ziraat Fakültesi Dergisi, 12: 24-33.
  • 49. Soković, M.D., Vukojević, J., Marin, P.D., Brkić, D.D., Vajs, V. & Van, Griensven, L.J. 2009. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules, 14: 238-249.
  • 50. Sumalan, R.M., Alexa, E. & Poiana, M.A. 2013. Assessment of inhibitory potential of essential oils on natural mycoflora and Fusarium mycotoxins production in wheat. Chemistry Central Journal, 7: 32.
  • 51. Tabanca, N., Demirci, B., Crockett, S.L., Başer, K.H.C. & Wedge, D.E. 2007. Chemical composition and antifungal activity of Arnica longifolia, Aster hesperius, and Chrysothamnus nauseosus essential oils. Journal of Agricultural and Food Chemistry, 55: 8430-8435.
  • 52. Talas, F. & McDonald, B.A. 2015. Significant variation in sensitivity to a DMI fungicide in field populations of Fusarium graminearum. Plant Pathology, 64: 664-670.
  • 53. Tufan, F., Kuluş, E.N., Sefer, Ö., Eraslan, M., Sefalı, S., Güngör, Ö. & Yörük, E. 2020. Determining WRKY transcription factors related to salinity stress response in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Anadolu Tarım Bilim Dergisi, 35: 1-7.
  • 54. Uhlig, S., Jestoi, M. & Parikka, P. 2007. Fusarium avenaceum-The North European situation. The International Journal of Food Microbiology, 119: 17-24.
  • 55. Velluti, A., Sanchis, V., Ramos, A.J., Turon, C. & Marin, S. 2004. Impact of essential oils on growth rate, zearalenone and deoxynivalenol production by Fusarium graminearum under different temperature and water activity conditions in maize grain. Journal of Applied Microbiology, 96: 716-724.
  • 56. Yaguchi, A., Yoshinari, T., Tsuyuki, R., Takahashi, H., Nakajima, T., Sugita-Konishi, Y., Nagasawa, H. & Sakuda, S. 2009. Isolation and identification of precocenes and piperitone from essential oils as specific inhibitors of trichothecene production by Fusarium graminearum. Journal of Agricultural and Food Chemistry, 57: 846-851.
  • 57. Yang, Y., Li M,, Duan, Y., Li T., Shi, Y., Zhao, D. & Zhou, Z. 2018. A new point mutation in β2 -tubulin confers resistance to carbendazim in Fusarium asiaticum. Pesticide Biochemistry and Physiology, 145: 15-21.
  • 58. Yli-Mattila, T., Mironenko, N.V., Alekhina, I.A., Hannukkala, A. & Bulat, S.A. 1997. Universally primed polymerase chain reaction analysis of Fusarium avenaceum isolated from wheat and barley in Finland. Agricultural and Food Science, 6: 25-36.
  • 59. Yli-Mattila, T., Paavanen-Huhtala, S., Parikka, P., Konstantinova, P. & Gagkaeva, T. 2004. Molecular and morphological diversity of fusarium species in Finland and northwestern Russia. The European Journal of Plant Pathology, 110: 573-585.
  • 60. Yli-Mattila, T. & Gagkaeva, T.Y. 2018. Fungi: Applications of fungi and their management strategies, pp. 293-317. In: Deshmukh, S.K., Misra, J.K., Tewari, J.P. & Papp T. (eds). Fusarium toxins in cereals in northern Europe and Asia, CRC Press, Florida, 496 pp.
  • 61. Yli-Mattila, T., Hussien, T., Gavrilova, O. & Gagkaeva, T. 2018. Morphological and molecular variation between Fusarium avenaceum, Fusarium arthrosporioides and Fusarium anguioides strains, Pathogens, 7(4): 94; https://doi.org/10.3390/pathogens7040094
  • 62. Yörük, E., Tunali, B., Kansu, B., Ölmez, F., Uz, G., Zümrüt, I.M., Sarıkaya, A. & Meyva, G. 2016. Characterization of high-level deoxynivalenol producer Fusarium graminearum and F. culmorum isolates caused head blight and crown rot diseases in Turkey. The Journal of Plant Diseases and Protection, 123: 177-186.
  • 63. Yörük, E. 2018. Tetraconazole leads to alterations in Fusarium graminearum at different molecular levels. Applied Ecology and Environmental Research, 16: 6155-6167.
  • 64. Yörük, E., Sefer, Ö., Sezer, A.S., Konukcu, Z. & Develi, E.S. 2018. Investigation of the effects of eugenol on Fusarium culmorum. Journal of The Institute of Science and Technology, 8: 215-221.
Yıl 2022, Cilt: 23 Sayı: 1, 71 - 79, 15.04.2022
https://doi.org/10.23902/trkjnat.1000196

Öz

Fusarium avenaceum (Fr.) Sacc. önemli bir bitki patojenidir. Fusarium avenaceum ile mücadele temelde fungisit kullanımını içerir. Ancak yeni stratejilere ihtiyaç duyulmaktadır. Mevcut çalışmada iki zıt arpa genotipi olan Hordeum vulgare L. cv. Cervoise and H. vulgare L. cv. Premium genotiplerinde terpinolenin zararsız etkileri ve F. avenaceum’a karşı antimikrobiyal etkileri araştırıldı. İlk olarak minimum inhibisyon konsantrasyonları (MİK) ve üremeyi baskılayan yarı konsantrasyon (IC50) değerleri 6 and 3 µg µL-1 olarak belirlendi. Gerçek zamanlı polimeraz zincir reaksiyonu (kPZR) F. avenaceum’da zearalenone ve enniatin üretimi üzerinde terpinolenin etkisinin belirlenmesinde bilgi verici oldu. Terpinolene F. avenaceum’da enniatin ve zearalenone üretiminde potansiyel baskılamaya sebep oldu. Buna karşın aurofusariun biyosentez gen analtımında anlamlı farklılık görülmemiştir. Arpada elektrokonduktivite (EK), katalaz (KAT) aktivitesi, CRED-RA analizi ve kPZR analizleri test edildi. EK değerlerinde bilimsel olarak anlamlı (p>0,05) farklılık gözlemlenmedi. Benzer şekilde deney setlerinin çoğunda katalaz aktivitesi ve su kaybetme oranları (SKO) terpinolene uygulamasından etkilenmedi (p>0,05). Arpada terpinolene uygulamasına bağlı olarak göreceli olarak düşük genomik instabilite (%75-85) ve epigenetik değişimler (%11-20,6) kaydedildi. WRKY6, WRKY24 ve WRKY41 gen anlatımları anlamlı farklılık göstermedi. Bulgular terpinolenin fitopatojenik mantarlara karşı potansiyel bir bitki koruma ajanı olarak kabul edilebileceğini göstermektedir. 

Proje Numarası

2020-02

Kaynakça

  • 1. Agus, H.H., Sarp, C. & Cemiloglu, M. 2018. Oxidative stress and mitochondrial impairment mediated apoptotic cell death induced by terpinolene in Schizosaccharomyces pombe. Toxicology Research, 7: 848-858.
  • 2. Alkan, M., Göre, M.E., Bayraktar, H. & Özer, G. 2019. Genetic variation of Fusarium spp. isolates associated with root and crown rot of winter wheat using retrotransposon-based iPBS assays. Uluslar Tarım Yaban Hayatı Bilim Dergisi, 5: 250-259.
  • 3. Arif, T., Bhosale, J.D., Kumar, N., Mandal, T.K., Bendre, R.S., Lavekar, G.S. & Dabur, R. 2009. Natural products–antifungal agents derived from plants. Journal of Asian Natural Products Research, 11: 621-638.
  • 4. Booth, C. & Spooner, B.M. 1984. Gibberella avenacea, teleomorph of Fusarium avenaceum, from stems of Pteridium aquilinum. Transactions of the British Mycological Society, 82(1): 178-180.
  • 5. Champeil, A., Fourbet, J.F., Doré, T. & Rossignol, L. 2004. Influence of cropping system on fusarium head blight and mycotoxin levels in winter wheat. Journal of Crop Protection, 23: 531-537.
  • 6. Chen, H., Wu, Q., Zhang, G., Wu, J., Zhu, F., Yang, H. & Zhuang, Y. 2019. Carbendazim-resistance of Gibberella zeae associated with fusarium head blight and its management in Jiangsu Province. China. Journal of Crop Protection, 124: 104866.
  • 7. Cho, U.H. & Park, J.O. 2000. Mercury-induced oxidative stress in tomato seedlings. Plant Science, 156: 1-9.
  • 8. Chung, W.H., Ishii, H., Nishimura, K., Ohshima, M., Iwama, T. & Yoshimatsu, H. 2008, Genetic analysis and PCR-based identification of major Fusarium species causing head blight on wheat in Japan. The Journal of Plant Pathology, 74: 364-374.
  • 9. Cook, R.J. 1967. Gibberella avenacea sp. n., perfect stage of Fusarium roseum f. sp. cerealis Avenaceum'. Phytopathology, 57(7): 732-736.
  • 10. da Cruz Cabral, L., Pinto, V.F. & Patriarca, A. 2013. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. International Journal of Food Microbiology, 166: 1-14.
  • 11. Daglia, M. 2012. Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23: 174-181.
  • 12. Dorman, H.D. & Deans, S.G. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. Journal of Applied Microbiology, 88: 308-316.
  • 13. Dweba, C.C., Figlan, S., Shimelis, H.A., Motaung, T.E., Sydenham, S., Mwadzingeni, L. & Tsilo, T.J. 2017. Fusarium head blight of wheat: pathogenesis and control strategies. Journal of Crop Protection, 91: 114-122.
  • 14. Fandohan, P., Gbenou, J.D., Gnonlonfin, B., Hell, K., Marasas, W.F.O. & Wingfield, M.J. 2004. Effect of essential oils on the growth of Fusarium verticillioides and fumonisin contamination in corn. Journal of Agricultural and Food Chemistry, 52: 6824-6829.
  • 15. Gazdağlı, A., Sefer, Ö., Yörük, E., Varol, G., Teker, T. & Albayrak, G. 2018a. Investigation of camphor effects on Fusarium graminearum and F. culmorum at different molecular levels. Pathogens, 7: 90.
  • 16. Gazdağlı, A., Sefer, Ö., Yörük, E., Varol, G.İ. & Albayrak, G. 2018b. Investigation on the terpinolene effects in Fusarium graminearum and F. culmorum (at different molecular levels), pp. 33-42. In: Aina, A.T. & Demirçalı, A (eds) Academic studies in Science and Mathematics, Gece Kitaplığı, Türkiye, 65 pp. ISBN: 978-605-288-613-7.
  • 17. Geiser, D.M., Aoki, T., Bacon, C.W., Baker, S.E., Bhattacharyya, M.K., Brandt, M.E. et al. 2013. One fungus, one name: defining the genus Fusarium in a scientifically robust way that preserves longstanding use. Phytopathology, 103: 400-408.
  • 18. Goudjil, M., Ladjel, S., Bencheikh, S.E., Hammoya, F., Bensaci, M.B., Zighmi, S. & Mehani, M. 2016. Bioactivity of Artemisia herba alba essential oil against plant pathogenic fungi. Der Pharma Chemica, 8: 46-52.
  • 19. Gräfenhan, T., Patrick, S.K., Roscoe, M., Trelka, R., Gaba, D., Chan, J.M., McKendry, T., Clear, R.M. & Tittlemier, S.A. 2013. Fusarium damage in cereal grains from Western Canada. 1. Phylogenetic analysis of moniliformin-producing fusarium species and their natural occurrence in mycotoxin-contaminated wheat, oats, and rye. Journal of Agricultural and Food Chemistry, 61: 5425-5437.
  • 20. Gürel, F., Öztürk, N.Z., Yörük, E., Uçarlı, C. & Poyraz, N. 2016. Comparison of expression patterns of selected drought-responsive genes in barley (Hordeum vulgare L.) under shock-dehydration and slow drought treatments. Plant Growth Regulation, 80: 183-193.
  • 21. Harris, E.L.V. & Angal, S. 1989. Protein purification methods, IRL Press at Oxford University Press, Oxford, 336 pp.
  • 22. Irzykowska, L., Bocianowski, J. & Baturo-Cieśniewska, A. 2013. Association of mating-type with mycelium growth rate and genetic variability of Fusarium culmorum. Central European Journal of Biology, 8: 701-711.
  • 23. Hietaniemi, V., Ramo, S., Yli-Mattila, T., Jestoi, M., Peltonen, S., Kartio, M., Sievilainen, E., Koivisto, T. & Parikka, P. 2016. Updated survey of Fusarium species and toxins in finnish cereal grains. Food Additives & Contaminants: Part A, 33: 831-848.
  • 24. Ivic, D., Sever, Z. & Kuzmanovska, B. 2015. In vitro sensitivity of fusarium graminearum, F. avenaceum and F. verticillioides to carbendazim, tebuconazole, flutriafol, metconazole and prochloraz. Pesticides and Phytomedicine, 26: 35-42.
  • 25. Jestoi, M., Rokka, M., Yli-Mattila, T., Parikka, P., Rizzo, A. & Peltonen, K. 2004. Presence and concentrations of the Fusarium-related mycotoxins beauvericin, enniatins and moniliformin in finnish grain samples. Food Additives and Contaminants, 21: 794-802.
  • 26. Jurado, M., Marín, P., Magan, N. & González-Jaén, M.T. 2008. Relationship between solute and matric potential stress, temperature, growth, and FUM1 gene expression in two Fusarium verticillioides strains from Spain. Applied and Environmental Microbiology Journal, 74: 2032-2036.
  • 27. Kerényi, Z., Moretti, A., Waalwijk, C., Oláh, B. & Hornok, L. 2004. Mating type sequences in asexually reproducing Fusarium species. Applied and Environmental Microbiology Journal, 70: 4419-4423.
  • 28. Kopacki, M. & Wagner, A. 2006. Effect of some fungicides on mycelium growth of Fusarium avenaceum (Fr.) sacc. pathogenic to chrysanthemum (Dendranthema grandiflora Tzvelev). Agronomy Research, 4: 237-240.
  • 29. Kumar, P., Mishra, S., Kumar, A. & Sharma, A.K. 2016. Antifungal efficacy of plant essential oils against stored grain fungi of Fusarium spp. The Journal of Food Science and Technology, 53: 3725-3734.
  • 30. Lingan, K. 2018. Antifungal activity of Artemisia nilagirica essential oil from the western ghats nilgiris against food borne fungi. Applied Biochemistry and Microbiology, 2: 2-6.
  • 31. Livak, J.K. & Schmittgen, T.D. 2001. Analysis of relative gene expression data using real time quantitative PCR and the 2-ΔΔCT method. Methods, 25: 402-408.
  • 32. Logrieco, A., Rizzo, A., Ferracane, R. & Ritieni, A. 2002. Occurrence of beauvericin and enniatins in wheat affected by Fusarium avenaceum head blight. Applied and Environmental Microbiology Journal, 68: 82-85.
  • 33. Lori, G.A., Sisterna, M.N., Sarandón, S.J., Rizzo, I. & Chidichimo, H. 2009. Fusarium head blight in wheat: impact of tillage and other agronomic practices under natural infection. Journal of Crop Protection, 28: 495-502.
  • 34. Lysøe, E., Harris, L.J., Walkowiak, S., Subramaniam, R., Divon, H.H., Riiser, E.S., Llorens, C., Gabaldón, T., Kistler, H.C., Jonkers, W., Kolseth, A.K., Nielsen, K.F., Thrane, U. & Frandsen, R.J. 2014. The genome of the generalist plant pathogen Fusarium avenaceum is enriched with genes involved in redox, signaling and secondary metabolism. PLoS One, 9: e112703.
  • 35. Machado, A.K., Brown, N.A., Urban, M., Kanyuka, K. & Hammond‐Kosack, K.E. 2018. RNAi as an emerging approach to control fusarium head blight disease and mycotoxin contamination in cereals. Pest Management Science, 74: 790-799.
  • 36. Marin, S., Velluti, A., Ramos, A.J. & Sanchis, V. 2004. Effect of essential oils on zearalenone and deoxynivalenol production by Fusarium graminearum in non-sterilized maize grain. Food Microbiology, 21: 313-318.
  • 37. McMullen, M., Halley, S., Schatz, B., Meyer, S., Jordahl, J. & Ransom, J. 2008. Integrated strategies for fusarium head blight management in the United States. Cereal Research Communications, 36: 563-568.
  • 38. Miedaner, T., Cumagun, C.J.R. & Chakraborty, S. 2008. Population genetics of three important head blight pathogens Fusarium graminearum, F. pseudograminearum and F. culmorum. Journal of Phytopathology, 156: 129-139.
  • 39. Nardemir, G., Aga, G., Arslan, E. & Erturk, F.A. 2015. Determination of genetic and epigenetic effects of glyphosate on Triticum aestivum with RAPD and CRED-RA techniques. Theoretical and Experimental Plant Physiology, 27: 131-139.
  • 40. Niu, C., Kebede, H., Auld, D.L., Woodward, J.E., Burow, G. & Wright, R.J. 2008. A safe inexpensive method to isolate high quality plant and fungal DNA in an open laboratory environment. African Journal of. Biotechnology, 7: 2818-2822.
  • 41. Orhan, D.D., Özçelik, B., Özgen, S. & Ergun, F. 2010. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiological Research, 165: 496-504.
  • 42. Panda, S.K., Chaudhury, I. & Khan, M.H. 2003. Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Plant Biology, 46: 289-294.
  • 43. Parry, D.W., Jenkins, P. & McLeod, L. 1995. Fusarium ear blight (scab) in small grain cereals -a review. Plant Pathology, 44: 207-238.
  • 44. Pasquali, M. & Migheli, Q. 2014. Genetic approaches to chemotype determination in type B-trichothecene producing Fusaria. The International Journal of Food Microbiology, 189: 164-182.
  • 45. Perczak, A., Gwiazdowska, D., Marchwińska, K., Juś, K., Gwiazdowski, R. & Waśkiewicz, A. 2019. Antifungal activity of selected essential oils against Fusarium culmorum and F. graminearum and their secondary metabolites in wheat seeds. Archives of Microbiology, 201: 1085-1097.
  • 46. Regnault-Roger, C., Vincent, C. & Arnason, J.T. 2012. Essential oils in insect control: low-risk products in a high-stakes world. The Annual Review of Entomology, 57: 405-424.
  • 47. Sefer, Ö., Yörük, E., Develi, E.S., Sezer, A.S. & Konukcu, Z. 2017a. Investigation of the effects of 2, 4-Dimethylpyrrole on Fusarium culmorum causal agent of head blight disease. International Journal of Secondary Metabolite, 4: 103-113.
  • 48. Sefer, Ö., Yörük, E., Develi, E.S., Zümrüt, I.M., Sezer, A.S. & Konukçu, Z. 2017b. Effects of Kaempferol on Growth and Toxin Production of Head Blight Agent Fusarium culmorum. Ziraat Fakültesi Dergisi, 12: 24-33.
  • 49. Soković, M.D., Vukojević, J., Marin, P.D., Brkić, D.D., Vajs, V. & Van, Griensven, L.J. 2009. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules, 14: 238-249.
  • 50. Sumalan, R.M., Alexa, E. & Poiana, M.A. 2013. Assessment of inhibitory potential of essential oils on natural mycoflora and Fusarium mycotoxins production in wheat. Chemistry Central Journal, 7: 32.
  • 51. Tabanca, N., Demirci, B., Crockett, S.L., Başer, K.H.C. & Wedge, D.E. 2007. Chemical composition and antifungal activity of Arnica longifolia, Aster hesperius, and Chrysothamnus nauseosus essential oils. Journal of Agricultural and Food Chemistry, 55: 8430-8435.
  • 52. Talas, F. & McDonald, B.A. 2015. Significant variation in sensitivity to a DMI fungicide in field populations of Fusarium graminearum. Plant Pathology, 64: 664-670.
  • 53. Tufan, F., Kuluş, E.N., Sefer, Ö., Eraslan, M., Sefalı, S., Güngör, Ö. & Yörük, E. 2020. Determining WRKY transcription factors related to salinity stress response in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Anadolu Tarım Bilim Dergisi, 35: 1-7.
  • 54. Uhlig, S., Jestoi, M. & Parikka, P. 2007. Fusarium avenaceum-The North European situation. The International Journal of Food Microbiology, 119: 17-24.
  • 55. Velluti, A., Sanchis, V., Ramos, A.J., Turon, C. & Marin, S. 2004. Impact of essential oils on growth rate, zearalenone and deoxynivalenol production by Fusarium graminearum under different temperature and water activity conditions in maize grain. Journal of Applied Microbiology, 96: 716-724.
  • 56. Yaguchi, A., Yoshinari, T., Tsuyuki, R., Takahashi, H., Nakajima, T., Sugita-Konishi, Y., Nagasawa, H. & Sakuda, S. 2009. Isolation and identification of precocenes and piperitone from essential oils as specific inhibitors of trichothecene production by Fusarium graminearum. Journal of Agricultural and Food Chemistry, 57: 846-851.
  • 57. Yang, Y., Li M,, Duan, Y., Li T., Shi, Y., Zhao, D. & Zhou, Z. 2018. A new point mutation in β2 -tubulin confers resistance to carbendazim in Fusarium asiaticum. Pesticide Biochemistry and Physiology, 145: 15-21.
  • 58. Yli-Mattila, T., Mironenko, N.V., Alekhina, I.A., Hannukkala, A. & Bulat, S.A. 1997. Universally primed polymerase chain reaction analysis of Fusarium avenaceum isolated from wheat and barley in Finland. Agricultural and Food Science, 6: 25-36.
  • 59. Yli-Mattila, T., Paavanen-Huhtala, S., Parikka, P., Konstantinova, P. & Gagkaeva, T. 2004. Molecular and morphological diversity of fusarium species in Finland and northwestern Russia. The European Journal of Plant Pathology, 110: 573-585.
  • 60. Yli-Mattila, T. & Gagkaeva, T.Y. 2018. Fungi: Applications of fungi and their management strategies, pp. 293-317. In: Deshmukh, S.K., Misra, J.K., Tewari, J.P. & Papp T. (eds). Fusarium toxins in cereals in northern Europe and Asia, CRC Press, Florida, 496 pp.
  • 61. Yli-Mattila, T., Hussien, T., Gavrilova, O. & Gagkaeva, T. 2018. Morphological and molecular variation between Fusarium avenaceum, Fusarium arthrosporioides and Fusarium anguioides strains, Pathogens, 7(4): 94; https://doi.org/10.3390/pathogens7040094
  • 62. Yörük, E., Tunali, B., Kansu, B., Ölmez, F., Uz, G., Zümrüt, I.M., Sarıkaya, A. & Meyva, G. 2016. Characterization of high-level deoxynivalenol producer Fusarium graminearum and F. culmorum isolates caused head blight and crown rot diseases in Turkey. The Journal of Plant Diseases and Protection, 123: 177-186.
  • 63. Yörük, E. 2018. Tetraconazole leads to alterations in Fusarium graminearum at different molecular levels. Applied Ecology and Environmental Research, 16: 6155-6167.
  • 64. Yörük, E., Sefer, Ö., Sezer, A.S., Konukcu, Z. & Develi, E.S. 2018. Investigation of the effects of eugenol on Fusarium culmorum. Journal of The Institute of Science and Technology, 8: 215-221.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji , Genetik, Hayvansal Üretim (Diğer)
Bölüm Araştırma Makalesi/Research Article
Yazarlar

Zeynep Danışman 0000-0002-4194-3924

Şule İnan 0000-0001-7921-0913

Esma Özsoy 0000-0002-3727-8466

Emre Yörük 0000-0003-2770-0157

Tapani Yli-mattila 0000-0002-0336-880X

Proje Numarası 2020-02
Yayımlanma Tarihi 15 Nisan 2022
Gönderilme Tarihi 24 Eylül 2021
Kabul Tarihi 25 Şubat 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 23 Sayı: 1

Kaynak Göster

APA Danışman, Z., İnan, Ş., Özsoy, E., Yörük, E., vd. (2022). TERPINOLENE IS AN EFFECTIVE ESSENTIAL OIL COMPOUND TO PROTECT Hordeum vulgare L. FROM Fusarium avenaceum (Fr.) Sacc. Trakya University Journal of Natural Sciences, 23(1), 71-79. https://doi.org/10.23902/trkjnat.1000196
AMA Danışman Z, İnan Ş, Özsoy E, Yörük E, Yli-mattila T. TERPINOLENE IS AN EFFECTIVE ESSENTIAL OIL COMPOUND TO PROTECT Hordeum vulgare L. FROM Fusarium avenaceum (Fr.) Sacc. Trakya Univ J Nat Sci. Nisan 2022;23(1):71-79. doi:10.23902/trkjnat.1000196
Chicago Danışman, Zeynep, Şule İnan, Esma Özsoy, Emre Yörük, ve Tapani Yli-mattila. “) Sacc”. Trakya University Journal of Natural Sciences 23, sy. 1 (Nisan 2022): 71-79. https://doi.org/10.23902/trkjnat.1000196.
EndNote Danışman Z, İnan Ş, Özsoy E, Yörük E, Yli-mattila T (01 Nisan 2022) TERPINOLENE IS AN EFFECTIVE ESSENTIAL OIL COMPOUND TO PROTECT Hordeum vulgare L. FROM Fusarium avenaceum (Fr.) Sacc. Trakya University Journal of Natural Sciences 23 1 71–79.
IEEE Z. Danışman, Ş. İnan, E. Özsoy, E. Yörük, ve T. Yli-mattila, “) Sacc”., Trakya Univ J Nat Sci, c. 23, sy. 1, ss. 71–79, 2022, doi: 10.23902/trkjnat.1000196.
ISNAD Danışman, Zeynep vd. “) Sacc”. Trakya University Journal of Natural Sciences 23/1 (Nisan 2022), 71-79. https://doi.org/10.23902/trkjnat.1000196.
JAMA Danışman Z, İnan Ş, Özsoy E, Yörük E, Yli-mattila T. TERPINOLENE IS AN EFFECTIVE ESSENTIAL OIL COMPOUND TO PROTECT Hordeum vulgare L. FROM Fusarium avenaceum (Fr.) Sacc. Trakya Univ J Nat Sci. 2022;23:71–79.
MLA Danışman, Zeynep vd. “) Sacc”. Trakya University Journal of Natural Sciences, c. 23, sy. 1, 2022, ss. 71-79, doi:10.23902/trkjnat.1000196.
Vancouver Danışman Z, İnan Ş, Özsoy E, Yörük E, Yli-mattila T. TERPINOLENE IS AN EFFECTIVE ESSENTIAL OIL COMPOUND TO PROTECT Hordeum vulgare L. FROM Fusarium avenaceum (Fr.) Sacc. Trakya Univ J Nat Sci. 2022;23(1):71-9.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.