Araştırma Makalesi
BibTex RIS Kaynak Göster

MOLECULAR CHARACTERIZATION OF BLACK FOOT DISEASE PATHOGENS IN GRAPEVINE NURSERIES AND EVALUATION OF SOME FUNGICIDES FOR CONTROL OF THE MOST VIRULENT ISOLATES

Yıl 2022, Cilt: 23 Sayı: 1, 95 - 111, 15.04.2022
https://doi.org/10.23902/trkjnat.1037376

Öz

Black foot disease, which is mainly caused by Ilyonectria Chaverri & Salgado and Dactylonectria L. Lombard & Crous species, causes serious destruction in most of the wine and grape producing regions of the world, particularly in nurseries and young vineyards. The aim of this research was to evaluate the present situation of black foot disease in grapevine nurseries (Vitis Vinifera L.), to identify its potential agents at morphological and molecular levels and to develop a control strategy against isolates found as the major virulent ones in pathogenicity tests. This study also represents the first attempt to control black foot disease in grapevine saplings in Turkey. Preliminary surveys were carried out in 21 grapevine nurseries in the Aegean Region during 2019 growing season. Black foot species obtained from vine saplings were identified as Ilyonectria liriodendri (Halleen, Rego & Crous), Dactylonectria macrodidyma (Halleen, Schroers & Crous) and D. torresensis (A. Cabral, Rego & Crous), using morphological and molecular methods. The pathogenicity studies revealed that the most virulent isolates belonged to I. liriodendri. Twelve chemical and one biological fungicides were screened in vitro for mycelial inhibition of I. liriodendri isolates. The experiments were performed in three replicates for each of the chemical fungicides. Sterile distilled water, instead of fungicide solution, was used for control trials. Mixtures of cyprodinil + fludioxonil, thiabendazole + fludioxonil + metalaxyl–m + azoxystrobin and azoxystrobin + metalaxyl-m + fludioxonil were the most effective chemical fungicides tested in mycelial inhibition of I. liriodendri isolates. Chemical fungicides mixtures of boscalid + kresoxim-methyl, promocarb hydrochloride (HCL) + fosetyl-al, azoxystrobin + difenoconazole, fludioxonil + metalaxyl–m and individual fungicides; cyprodinil, fluoxapyroxad, hymexazole, fenhexamid and 8-hydroxyquinoline sulphate were not effective on mycelial inhibition. Biocontrol activity of Trichoderma harzianum Rifai KRL-AG2 strain against I. liriodendri was evaluated. The experiment was performed in four replicates for each isolate. Petri dishes with only I. liriodendri mycelial discs used as controls. Treatment with Trichoderma harzianum Rifai KRL-AG2 strain provided 60.1% to 80.6% inhibition against I. liriodendri isolates. The most effective fungicides tested in vitro were evaluated in 2020 and 2021 under controlled conditions against possible infections of I. liriodendri during the rooting process of 1103 Paulsen grapevine rootstocks. Mixtures of thiabendazol + fludioxonil + metalaxyl–m + azoxystrobin and cyprodinil + fludioxonil were the most effective fungicides in the experiments conducted in 2020 and 2021, followed by azoxystrobin + metalaxyl-m + fludioxonil and Trichoderma harzianum Rifai KRL-AG2 strain. 

Destekleyen Kurum

Republic of Turkey Ministry of Agriculture and Forestry, General Directorate of Agricultural Research and Policies

Proje Numarası

TAGEM/BSAD/A/20/A2/P1/1559

Teşekkür

Study results were obtained from the PhD thesis of Murat Yıldız conducted in Viticulture Research Institute Yunusemre, Manisa, Türkiye and Department of Plant Protection, Faculty of Agriculture, Ege University, İzmir, Turkey.

Kaynakça

  • 1. Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide, Journal of Economic Entomology, 18: 265-267.
  • 2. Agustí-Brisach, C. & Armengol, J. 2013. Black-foot disease of grapevine: An update on taxonomy, epidemiology and management strategies. Phytopathologia Mediterranea, 52: 245-261.
  • 3. Agustí-Brisach, C., Gramaje, D., García-Jiménez, J. & Armengol, J. 2013. Detection of black-foot disease pathogens in the grapevine nursery propagation process in Spain. European Journal of Plant Pathology, 137: 103-112.
  • 4. Aigoun-Mouhous, W., Elena, G. & Cabral, A. et al. 2019. Characterization and pathogenicity of Cylindrocarpon-like asexual morphs associated with black foot disease in Algerian grapevine nurseries, with the description of Pleiocarpon algeriense sp. nov. European Journal of Plant Pathology, 154: 887-901.
  • 5. Akgül, D.S., Güngör-Savaş, N., Önder, S., Özben, S. & Kaymak, S. 2014. First Report of Campylocarpon fasciculare causing Black foot disease of grapevine in Turkey. Plant Disease, 98(9): 1277. https://doi.org/10.1094/PDIS-03-14-0284-PDN
  • 6. Alániz, S., Armengol, J., Léon, M., García Jiménez, J. & Abad Campos, P. 2009. Analysis of genetic and virulence diversity of Cylindrocarpon liriodendri and C. macrodidymum associated with black foot disease of grapevine. Mycological Research, 113: 16-23.
  • 7. Alániz, S., García-Jiménez, J., Abad-Campos, P. & Armengol, J. 2010. Susceptibility of grapevine rootstocks to Cylindrocarpon liriodendri and C. macrodidymum. Scientia Horticulturae, 125: 305-308.
  • 8. Alániz, S., León, M., Vicent, A., García-Jiménez, J., Abad- Campos, P. & Armengol, J. 2007. Characterization of Cylindrocarpon species associated with black foot disease of grapevine in Spain. Plant Disease, 91(9): 1187-1193.
  • 9. Ari, M.E. & Tosun, N. 2004. Fungal diseases of grape, pp. 297-328. In: Daris, R., Niskanen, R. & Jain S.M. (eds) Crop management and postharvest handling of horticultural products. Volume IV: Diseases and disorders of fruits and vegetables. Science Publishers, Enfield, USA.
  • 10. Armengol, J., Vicent, A., Torne, L., Garcia-Figueres, F. & Garcia-Jimenez, J. 2001. Fungi associated with esca and grapevine declines in Spain: a three-year survey. Phytopathologia Mediterranea, 40 (Supplement): 325-329.
  • 11. Atak, A., Göksel, Z. & Çelik, H. 2017. Relations between downy/powdery mildew diseases and some phenolic compounds in Vitis spp. Turkish Journal of Agriculture and Forestry, 41: 69-81.
  • 12. Bell, D.K., Wells, H.D. & Markham, C.R. 1982. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology, 72: 379-382.
  • 13. Bora, T. & Karaca, İ. 1970. Kültür bitkilerinde hastalığın ve zararın ölçülmesi. Ege Üniv. Matb. Yayınları, No: 167, Bornova, 43 pp.
  • 14. Cabral, A, Rego, C, Nascimento, T., Oliveira, H., Groenewald, J.Z. & Crous, P.W. 2012c. Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology, 116: 62-80.
  • 15. Cabral, A., Groenewald, J.Z., Rego, C., Oliveira, H.G. & Crous, P.W. 2012a. Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycological Progress, 11: 655-688.
  • 16. Cabral, A., Rego, C., Crous, P.W. & Oliveira, H. 2012b. Virulence and cross-infection potential of Ilyonectria spp. to grapevine. Phytopathologia Mediterranea, 51: 340-354.
  • 17. Cardoso, M., Diniz, I., Cabral, A., Rego, C. & Oliveira, H. 2012. Unveiling inoculum sources of Black foot pathogens in a commercial grapevine nursery. Phytopatologia Mediterranea, 51: 442-443.
  • 18. Cenis, J.L. 1992. Rapid extraction of fungal DNA for PCR amplification. Nucleic acid Research, 20(9): 2380.
  • 19. Crous, P.W., Groenewald, J.Z., Risede, J.M., Simoneau, P. & Hywel Jones, N.L. 2004. Calonectria species and their Cylindrocladium anamorphs species with sphaeropedunculate vesicles. Studies in Mycology, 50: 415-430.
  • 20. Dardeniz, A., Ateş, F., Çoban, H., Kahraman, K.A., Savaş, Y., Ali, B. & Gökdemir, A. 2015. Günümüz asma fidancılık işletmlerinde yürütülen asma fidanı üretim faaliyetlerinin irdelenmesi. Ç.O.M.Ü. Zir. Fak. Dergisi, 3 (2): 127-143.
  • 21. Dos Santos, R.F., Blume, E., Muniz, M., Steckling, S.M., Burtet, G.W., Harakawa, R., Garrido, L.R. & Reiniger, L. 2014. First Report of "Cylindrocarpon" pauciseptatum Associated with Black Foot Disease of Grapevine in Brazil. Plant disease, 98(4), 567. https://doi.org/10.1094/PDIS-06-13-0635-PDN
  • 22. Fourie, P.H. & Halleen, F. 2001. Diagnosis of fungal diseases and their involvement in dieback disease of young vines. Wynboer, 149: 1-23.
  • 23. Glass, N.L. & Donaldson, G.C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61: 1323-1330.
  • 24. Gramaje, D., Úrbez Torres, J.R. & Sosnowski, M.R. 2018. Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Disease, 102: 12-39.
  • 25. Güngör Savaş, N. & Yıldız, M. 2021. Molecular identification of Diplodia seriata De Not. causing dieback effect on grapevines and evaluation of in vitro efficacy of five different synthetic fungicides against this disease. Trakya University Journal of Natural Sciences, 22(1): 93-100. https://doi.org/10.23902/trkjnat.863506
  • 26. Güngör Savaş, N., Akgül, D.S. & Atalay Albaz, E. 2015. First Report of Ilyonectria liriodendri Associated with Black Foot Disease of Grapevine in Turkey, Plant Disease, 99(12): 1855-1855.
  • 27. Gungor-Savas, N., Akgül, D.S., Ozarslandan, M. & Yildiz, M. 2020. First Report of Dactylonectria alcacerensis and Dactylonectria torresensis Associated with Black Foot Disease of Grapevine in Turkey. Plant Disease, 104: 2027-2028.
  • 28. Halleen, F. & Fourie, P.H. 2016. An integrated strategy for the proactive management of grapevine trunk disease pathogen infections in grapevine nurseries. South African Journal of Enology and Viticulture, 37: 104-114.
  • 29. Halleen, F., Fourie, P.H. & Crous, P.W. 2006. A review of black foot disease of grape vine. Phytopathologia Mediterranea, 45: 55-67.
  • 30. Halleen, F., Schroers, H.J., Groenewald, J.Z. & Crous, P.W. 2004. Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. nov. associated with black foot disease of grapevines (Vitis spp). Studies in Mycology, 50: 431-455.
  • 31. İçli, N. & Tahmas Kahyaoğlu, D. 2020. Investigation of pesticide residues in fresh Sultani grapes and antioxidant properties of fresh/sun-dried/oven-dried grapes. Turkish Journal of Agriculture and Forestry, 44: 350-360.
  • 32. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547-1549.
  • 33. Kurt, Ş., Soylu, S., Uysal, A., Soylu, E.M. & Kara, M. 2020. Ceviz gövde kanseri hastalığı etmeni Botryosphaeria dothidea’nın tanılanması ve bazı fungisitlerin hastalık etmenine karşı in vitro antifungal etkinliklerinin belirlenmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 25(1): 46-56.
  • 34. Lawrence, D.P., Nouri, M.T. & Trouillas, F.P. 2019. Taxonomy and multi-locus phylogeny of cylindrocarpon-like species associated with diseased roots of grapevine and other fruit and nut crops in California. Fungal Systematics and Evolution, 4: 59-75.
  • 35. Lombard, L., Van Der Merwe, N., Groenewald, J. & Crous, P. 2014. Lineages in Nectriaceae: Re-evaluating the generic status of Ilyonectria and allied genera. Phytopathologia Mediterranea, 53: 515-532.
  • 36. Mohammadi, H., Alániz, S., Banihashemi, Z. & Armengol, J. 2009. Characterization of Cylindrocarpon liriodendri associated with black foot disease of grapevine in Iran. Journal of Phytopathology, 157: 642-645.
  • 37. Mundy, D.C. 2015. Ecology and control of grapevine root diseases in New Zealand: a review. New Zealand Plant Protection, 68: 396-404.
  • 38. Özben, S. 2020. Asma Fidanlıklarında Önemli Odun Dokusu Fungal Hastalıkların Tespiti ve Bazı Üzüm Çeşitlerinin Phaeoacremonium aleophilum’a Karşı Reaksiyonlarının Belirlenmesi. Doctoral Thesis, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara 175 pp.
  • 39. Özben, S., Demirci, F., Değirmenci, K. & Uzunok, S. 2012. First report of Cylindrocarpon macrodidymum associated with Black foot diseases of grapevine in Turkey, Plant Disease, 96(5), 762. https://doi.org/10.1094/PDIS-05-11-0393-PDN
  • 40. Pal, K.K. & McSpadden Gardener, B. 2006. Biological Control of Plant Pathogens. The Plant Health Instructor, 1-25 pp.
  • 41. Pathrose, B., Jones, E.E., Jaspers, M.V. & Ridgway, H.J. 2014. High genotypic and virulence diversity in Ilyonectria liriodendri isolates associated with black foot disease in New Zealand vineyards. Plant Pathology, 63: 613-624.
  • 42. Petit, E. & Gubler, W.D. 2005. Characterization of Cylindrocarpon species, the cause of black foot disease of grapevine in California. Plant Disease, 89: 1051-1059.
  • 43. Rego, C., Farropas, L., Nascimento, T., Cabral, A. & Oliveira, H. 2006. Black foot of grapevine: Sensitivity of Cylindrocarpon destructans to fungicides. Phytopathologia Mediterranea, 45: 93-100.
  • 44. Rego, C., Nascimento, T., Cabral, A., Silva, M.J. & Oliveira, H. 2009. “Control of grapevine wood fungi in commercial nurseries”. Phytopathologia Mediterranea, 48: 128-135.
  • 45. Rego, C., Oliveira, H., Carvalho, A. & Phillips, A. 2000. Involvement of Phaeoacremonium spp. and Cylindrocarpon destructans with grapevine decline in Portugal. Phytopathologia Mediterranea, 39: 76-79.
  • 46. Royse, D.J. & Ries, S.M. 1978. The influence of fungi isolated from peach twigs on the pathogenicity of Cytospora cincta. Phytopathology, 68: 603-607.
  • 47. Santos, R.F., Blume, E., Muniz, M.F.B., Heckler, L.I., Finger, G., Maciel, C.G., Harakava, R. & Garrido, L.R. 2014. First report of Ilyonectria macrodidyma associated with black foot disease of grapevine in Brazil. Plant Disease, 98(1), 156. https://doi.org/10.1094/PDIS-04-13-0424-PDN
  • 48. Santos, R.F., Durigon, M.R. & Blume, E. 2015. Aggressiveness of Ilyonectria spp. and Cylindrocarpon pauciseptatum associated with black foot disease of grapevine. Revista Brasileira de Ciências Agrárias, 10: 49-53.
  • 49. Tamura, K. & Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10: 512-526.
  • 50. Thompson, J.D., Higgins, D.G. & Gibson, T.J. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22): 4673-4680.
  • 51. Townsend, G.R. & Heuberger, J.W. 1943. Methods for estimating losses caused by diseases in fungicide experi ments. The Plant Disease Reporter, 27: 340-343.
  • 52. TÜİK, 2021. The official website of Turkish Statistical Institute, https://biruni.tuik.gov.tr/bitkiselapp/bitkisel.zul (Date accessed: 19.04.2021).
  • 53. Úrbez-Torres, J.R., Haag, P., Bowen, P. & O’Gorman, D.T. 2014. Grapevine trunk diseases in British Columbia: Incidence and characterization of the fungal pathogens associated with black foot disease of grapevine. Plant Disease, 98: 456-468.
  • 54. Waite, H., Cole, M., Jaudzems, G. & Faragher, J. 2004. Recent advances in grapevine propagation research. The Australian and New Zealand Grapegrower and Winemaker Annual Technical Issue 485: 39-40.
  • 55. White, T.J., Burns, T., Lee, S. & Taylor, J. 1990. PCR protocols: A guide to methods and applications, Academic Press, San Diego, 482 pp.
Yıl 2022, Cilt: 23 Sayı: 1, 95 - 111, 15.04.2022
https://doi.org/10.23902/trkjnat.1037376

Öz

Esas olarak Ilyonectria Chaverri & Salgado ve Dactylonectria L. Lombard & Crous türlerinin neden olduğu karabacak hastalığı, dünyanın şarap ve üzüm üreten bölgelerinin çoğunda, özellikle fidanlıklarda ve genç bağlarda ciddi yıkımlara sebep olmaktadır. Bu çalışma ile karabacak hastalığının, asma fidanlıklarındaki (Vitis Vinifera L.) durumunun saptanması, etmenlerinin morfolojik ve moleküler düzeyde tanılanması ve patojenisite testlerinde en virülent olarak belirlenen türlerin mücadelesi amaçlanmıştır. Bu çalışma aynı zamanda Türkiye’de asma fidanlarında karabacak hastalığının mücadelesine yönelik olarak ilk girişimi temsil etmektedir. İlk olarak, 2019-2020 yıllarında Ege Bölgesi’ndeki 21 asma fidanlığında sürveyler gerçekleştirilmiştir. Asma fidanlarından elde edilen karabacak türleri, morfolojik ve moleküler yöntemler kullanılarak Ilyonectria liriodendri (Halleen, Rego & Crous), Dactylonectria macrodidyma (Halleen, Schroers & Crous) ve D. torresensis (A. Cabral, Rego & Crous) olarak tanımlanmıştır. Patojenisite çalışmaları sonucunda en virülent izolatların I. liriodendri türüne ait olduğu belirlenmiştir. Şu ana kadar Türkiye'de karabacak hastalığına karşı ruhsatlı bir fungisit bulunmamaktadır. On iki kimyasal ve bir biyolojik fungisit, I. liriodendri izolatlarının miselyal inhibisyonu için in vitro olarak taranmıştır. Deney, her bir kimyasal fungisit için üç tekerrür halinde gerçekleştirilmiştir. Kontroller için fungisit solüsyonu yerine steril distile su kullanılmıştır. Cyprodinil + fludioxonil, thiabendazole + fludioxonil + metalaxyl–m + azoxystrobin ve azoxystrobin + metalaxyl-m + fludioxonil karışımları, I. liriodendri izolatlarının miselyal inhibisyonunda test edilen en etkili kimyasal fungisitler olmuştur. Kimyasal fungisit karışımları boscalid + kresoxim-methyl, promocarb hidroklorür (HCL) + fosetyl-al, azoxystrobin + difenoconazole, fludioxonil + metalaxyl–m ve tekli fungisitler cyprodinil, fluoxapyroxad, hymexazole, fenhexamid ve 8-hidroksikinolin sülfat, I. liriodendri'nin miselyal inhibisyonu üzerinde etkili bulunmamıştır. Trichoderma harzianum Rifai KRL-AG2 ırkının, I. liriodendri’ye karşı in vitro biyokontrol aktiviteside değerlendirilmiştir. Deney, her izolat için dört tekrarlı olarak gerçekleştirilmiştir. Sadece I. liriodendri miselyal diskleri olan petri kapları kontrol olarak kullanılmıştır. Denemede, Trichoderma harzianum Rifai KRL-AG2 ırkı ile muamele I. liriodendri izolatlarına karşı %60.1 ve %80.6’lık miselyal inhibisyon sağlamıştır. Ayrıca in vitro’da test edilen en etkili fungisitler, 1103 Paulsen asma anaçlarının köklenme işlemi sırasında I. liriodendri'nin olası enfeksiyonlarına karşı kontrollü koşullarda 2020 ve 2021 yıllarında test edilmiştir. 2020 ve 2021 yıllarında yapılan deneylerde thiabendazol + fludioxonil + metalaxyl–m + azoxystrobin ve cyprodinil + fludioxonil en etkili fungisitler olmuş, bunu azoxystrobin + metalaxyl-m + fludioxonil ve Trichoderma harzianum Rifai KRL-AG2 ırkı izlemiştir.

Proje Numarası

TAGEM/BSAD/A/20/A2/P1/1559

Kaynakça

  • 1. Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide, Journal of Economic Entomology, 18: 265-267.
  • 2. Agustí-Brisach, C. & Armengol, J. 2013. Black-foot disease of grapevine: An update on taxonomy, epidemiology and management strategies. Phytopathologia Mediterranea, 52: 245-261.
  • 3. Agustí-Brisach, C., Gramaje, D., García-Jiménez, J. & Armengol, J. 2013. Detection of black-foot disease pathogens in the grapevine nursery propagation process in Spain. European Journal of Plant Pathology, 137: 103-112.
  • 4. Aigoun-Mouhous, W., Elena, G. & Cabral, A. et al. 2019. Characterization and pathogenicity of Cylindrocarpon-like asexual morphs associated with black foot disease in Algerian grapevine nurseries, with the description of Pleiocarpon algeriense sp. nov. European Journal of Plant Pathology, 154: 887-901.
  • 5. Akgül, D.S., Güngör-Savaş, N., Önder, S., Özben, S. & Kaymak, S. 2014. First Report of Campylocarpon fasciculare causing Black foot disease of grapevine in Turkey. Plant Disease, 98(9): 1277. https://doi.org/10.1094/PDIS-03-14-0284-PDN
  • 6. Alániz, S., Armengol, J., Léon, M., García Jiménez, J. & Abad Campos, P. 2009. Analysis of genetic and virulence diversity of Cylindrocarpon liriodendri and C. macrodidymum associated with black foot disease of grapevine. Mycological Research, 113: 16-23.
  • 7. Alániz, S., García-Jiménez, J., Abad-Campos, P. & Armengol, J. 2010. Susceptibility of grapevine rootstocks to Cylindrocarpon liriodendri and C. macrodidymum. Scientia Horticulturae, 125: 305-308.
  • 8. Alániz, S., León, M., Vicent, A., García-Jiménez, J., Abad- Campos, P. & Armengol, J. 2007. Characterization of Cylindrocarpon species associated with black foot disease of grapevine in Spain. Plant Disease, 91(9): 1187-1193.
  • 9. Ari, M.E. & Tosun, N. 2004. Fungal diseases of grape, pp. 297-328. In: Daris, R., Niskanen, R. & Jain S.M. (eds) Crop management and postharvest handling of horticultural products. Volume IV: Diseases and disorders of fruits and vegetables. Science Publishers, Enfield, USA.
  • 10. Armengol, J., Vicent, A., Torne, L., Garcia-Figueres, F. & Garcia-Jimenez, J. 2001. Fungi associated with esca and grapevine declines in Spain: a three-year survey. Phytopathologia Mediterranea, 40 (Supplement): 325-329.
  • 11. Atak, A., Göksel, Z. & Çelik, H. 2017. Relations between downy/powdery mildew diseases and some phenolic compounds in Vitis spp. Turkish Journal of Agriculture and Forestry, 41: 69-81.
  • 12. Bell, D.K., Wells, H.D. & Markham, C.R. 1982. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology, 72: 379-382.
  • 13. Bora, T. & Karaca, İ. 1970. Kültür bitkilerinde hastalığın ve zararın ölçülmesi. Ege Üniv. Matb. Yayınları, No: 167, Bornova, 43 pp.
  • 14. Cabral, A, Rego, C, Nascimento, T., Oliveira, H., Groenewald, J.Z. & Crous, P.W. 2012c. Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology, 116: 62-80.
  • 15. Cabral, A., Groenewald, J.Z., Rego, C., Oliveira, H.G. & Crous, P.W. 2012a. Cylindrocarpon root rot: multi-gene analysis reveals novel species within the Ilyonectria radicicola species complex. Mycological Progress, 11: 655-688.
  • 16. Cabral, A., Rego, C., Crous, P.W. & Oliveira, H. 2012b. Virulence and cross-infection potential of Ilyonectria spp. to grapevine. Phytopathologia Mediterranea, 51: 340-354.
  • 17. Cardoso, M., Diniz, I., Cabral, A., Rego, C. & Oliveira, H. 2012. Unveiling inoculum sources of Black foot pathogens in a commercial grapevine nursery. Phytopatologia Mediterranea, 51: 442-443.
  • 18. Cenis, J.L. 1992. Rapid extraction of fungal DNA for PCR amplification. Nucleic acid Research, 20(9): 2380.
  • 19. Crous, P.W., Groenewald, J.Z., Risede, J.M., Simoneau, P. & Hywel Jones, N.L. 2004. Calonectria species and their Cylindrocladium anamorphs species with sphaeropedunculate vesicles. Studies in Mycology, 50: 415-430.
  • 20. Dardeniz, A., Ateş, F., Çoban, H., Kahraman, K.A., Savaş, Y., Ali, B. & Gökdemir, A. 2015. Günümüz asma fidancılık işletmlerinde yürütülen asma fidanı üretim faaliyetlerinin irdelenmesi. Ç.O.M.Ü. Zir. Fak. Dergisi, 3 (2): 127-143.
  • 21. Dos Santos, R.F., Blume, E., Muniz, M., Steckling, S.M., Burtet, G.W., Harakawa, R., Garrido, L.R. & Reiniger, L. 2014. First Report of "Cylindrocarpon" pauciseptatum Associated with Black Foot Disease of Grapevine in Brazil. Plant disease, 98(4), 567. https://doi.org/10.1094/PDIS-06-13-0635-PDN
  • 22. Fourie, P.H. & Halleen, F. 2001. Diagnosis of fungal diseases and their involvement in dieback disease of young vines. Wynboer, 149: 1-23.
  • 23. Glass, N.L. & Donaldson, G.C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61: 1323-1330.
  • 24. Gramaje, D., Úrbez Torres, J.R. & Sosnowski, M.R. 2018. Managing grapevine trunk diseases with respect to etiology and epidemiology: current strategies and future prospects. Plant Disease, 102: 12-39.
  • 25. Güngör Savaş, N. & Yıldız, M. 2021. Molecular identification of Diplodia seriata De Not. causing dieback effect on grapevines and evaluation of in vitro efficacy of five different synthetic fungicides against this disease. Trakya University Journal of Natural Sciences, 22(1): 93-100. https://doi.org/10.23902/trkjnat.863506
  • 26. Güngör Savaş, N., Akgül, D.S. & Atalay Albaz, E. 2015. First Report of Ilyonectria liriodendri Associated with Black Foot Disease of Grapevine in Turkey, Plant Disease, 99(12): 1855-1855.
  • 27. Gungor-Savas, N., Akgül, D.S., Ozarslandan, M. & Yildiz, M. 2020. First Report of Dactylonectria alcacerensis and Dactylonectria torresensis Associated with Black Foot Disease of Grapevine in Turkey. Plant Disease, 104: 2027-2028.
  • 28. Halleen, F. & Fourie, P.H. 2016. An integrated strategy for the proactive management of grapevine trunk disease pathogen infections in grapevine nurseries. South African Journal of Enology and Viticulture, 37: 104-114.
  • 29. Halleen, F., Fourie, P.H. & Crous, P.W. 2006. A review of black foot disease of grape vine. Phytopathologia Mediterranea, 45: 55-67.
  • 30. Halleen, F., Schroers, H.J., Groenewald, J.Z. & Crous, P.W. 2004. Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. nov. associated with black foot disease of grapevines (Vitis spp). Studies in Mycology, 50: 431-455.
  • 31. İçli, N. & Tahmas Kahyaoğlu, D. 2020. Investigation of pesticide residues in fresh Sultani grapes and antioxidant properties of fresh/sun-dried/oven-dried grapes. Turkish Journal of Agriculture and Forestry, 44: 350-360.
  • 32. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6): 1547-1549.
  • 33. Kurt, Ş., Soylu, S., Uysal, A., Soylu, E.M. & Kara, M. 2020. Ceviz gövde kanseri hastalığı etmeni Botryosphaeria dothidea’nın tanılanması ve bazı fungisitlerin hastalık etmenine karşı in vitro antifungal etkinliklerinin belirlenmesi. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 25(1): 46-56.
  • 34. Lawrence, D.P., Nouri, M.T. & Trouillas, F.P. 2019. Taxonomy and multi-locus phylogeny of cylindrocarpon-like species associated with diseased roots of grapevine and other fruit and nut crops in California. Fungal Systematics and Evolution, 4: 59-75.
  • 35. Lombard, L., Van Der Merwe, N., Groenewald, J. & Crous, P. 2014. Lineages in Nectriaceae: Re-evaluating the generic status of Ilyonectria and allied genera. Phytopathologia Mediterranea, 53: 515-532.
  • 36. Mohammadi, H., Alániz, S., Banihashemi, Z. & Armengol, J. 2009. Characterization of Cylindrocarpon liriodendri associated with black foot disease of grapevine in Iran. Journal of Phytopathology, 157: 642-645.
  • 37. Mundy, D.C. 2015. Ecology and control of grapevine root diseases in New Zealand: a review. New Zealand Plant Protection, 68: 396-404.
  • 38. Özben, S. 2020. Asma Fidanlıklarında Önemli Odun Dokusu Fungal Hastalıkların Tespiti ve Bazı Üzüm Çeşitlerinin Phaeoacremonium aleophilum’a Karşı Reaksiyonlarının Belirlenmesi. Doctoral Thesis, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara 175 pp.
  • 39. Özben, S., Demirci, F., Değirmenci, K. & Uzunok, S. 2012. First report of Cylindrocarpon macrodidymum associated with Black foot diseases of grapevine in Turkey, Plant Disease, 96(5), 762. https://doi.org/10.1094/PDIS-05-11-0393-PDN
  • 40. Pal, K.K. & McSpadden Gardener, B. 2006. Biological Control of Plant Pathogens. The Plant Health Instructor, 1-25 pp.
  • 41. Pathrose, B., Jones, E.E., Jaspers, M.V. & Ridgway, H.J. 2014. High genotypic and virulence diversity in Ilyonectria liriodendri isolates associated with black foot disease in New Zealand vineyards. Plant Pathology, 63: 613-624.
  • 42. Petit, E. & Gubler, W.D. 2005. Characterization of Cylindrocarpon species, the cause of black foot disease of grapevine in California. Plant Disease, 89: 1051-1059.
  • 43. Rego, C., Farropas, L., Nascimento, T., Cabral, A. & Oliveira, H. 2006. Black foot of grapevine: Sensitivity of Cylindrocarpon destructans to fungicides. Phytopathologia Mediterranea, 45: 93-100.
  • 44. Rego, C., Nascimento, T., Cabral, A., Silva, M.J. & Oliveira, H. 2009. “Control of grapevine wood fungi in commercial nurseries”. Phytopathologia Mediterranea, 48: 128-135.
  • 45. Rego, C., Oliveira, H., Carvalho, A. & Phillips, A. 2000. Involvement of Phaeoacremonium spp. and Cylindrocarpon destructans with grapevine decline in Portugal. Phytopathologia Mediterranea, 39: 76-79.
  • 46. Royse, D.J. & Ries, S.M. 1978. The influence of fungi isolated from peach twigs on the pathogenicity of Cytospora cincta. Phytopathology, 68: 603-607.
  • 47. Santos, R.F., Blume, E., Muniz, M.F.B., Heckler, L.I., Finger, G., Maciel, C.G., Harakava, R. & Garrido, L.R. 2014. First report of Ilyonectria macrodidyma associated with black foot disease of grapevine in Brazil. Plant Disease, 98(1), 156. https://doi.org/10.1094/PDIS-04-13-0424-PDN
  • 48. Santos, R.F., Durigon, M.R. & Blume, E. 2015. Aggressiveness of Ilyonectria spp. and Cylindrocarpon pauciseptatum associated with black foot disease of grapevine. Revista Brasileira de Ciências Agrárias, 10: 49-53.
  • 49. Tamura, K. & Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10: 512-526.
  • 50. Thompson, J.D., Higgins, D.G. & Gibson, T.J. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22): 4673-4680.
  • 51. Townsend, G.R. & Heuberger, J.W. 1943. Methods for estimating losses caused by diseases in fungicide experi ments. The Plant Disease Reporter, 27: 340-343.
  • 52. TÜİK, 2021. The official website of Turkish Statistical Institute, https://biruni.tuik.gov.tr/bitkiselapp/bitkisel.zul (Date accessed: 19.04.2021).
  • 53. Úrbez-Torres, J.R., Haag, P., Bowen, P. & O’Gorman, D.T. 2014. Grapevine trunk diseases in British Columbia: Incidence and characterization of the fungal pathogens associated with black foot disease of grapevine. Plant Disease, 98: 456-468.
  • 54. Waite, H., Cole, M., Jaudzems, G. & Faragher, J. 2004. Recent advances in grapevine propagation research. The Australian and New Zealand Grapegrower and Winemaker Annual Technical Issue 485: 39-40.
  • 55. White, T.J., Burns, T., Lee, S. & Taylor, J. 1990. PCR protocols: A guide to methods and applications, Academic Press, San Diego, 482 pp.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Araştırma Makalesi/Research Article
Yazarlar

Murat Yıldız 0000-0002-0758-0429

Necip Tosun 0000-0001-5804-5760

Proje Numarası TAGEM/BSAD/A/20/A2/P1/1559
Yayımlanma Tarihi 15 Nisan 2022
Gönderilme Tarihi 16 Aralık 2021
Kabul Tarihi 6 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 23 Sayı: 1

Kaynak Göster

APA Yıldız, M., & Tosun, N. (2022). MOLECULAR CHARACTERIZATION OF BLACK FOOT DISEASE PATHOGENS IN GRAPEVINE NURSERIES AND EVALUATION OF SOME FUNGICIDES FOR CONTROL OF THE MOST VIRULENT ISOLATES. Trakya University Journal of Natural Sciences, 23(1), 95-111. https://doi.org/10.23902/trkjnat.1037376
AMA Yıldız M, Tosun N. MOLECULAR CHARACTERIZATION OF BLACK FOOT DISEASE PATHOGENS IN GRAPEVINE NURSERIES AND EVALUATION OF SOME FUNGICIDES FOR CONTROL OF THE MOST VIRULENT ISOLATES. Trakya Univ J Nat Sci. Nisan 2022;23(1):95-111. doi:10.23902/trkjnat.1037376
Chicago Yıldız, Murat, ve Necip Tosun. “MOLECULAR CHARACTERIZATION OF BLACK FOOT DISEASE PATHOGENS IN GRAPEVINE NURSERIES AND EVALUATION OF SOME FUNGICIDES FOR CONTROL OF THE MOST VIRULENT ISOLATES”. Trakya University Journal of Natural Sciences 23, sy. 1 (Nisan 2022): 95-111. https://doi.org/10.23902/trkjnat.1037376.
EndNote Yıldız M, Tosun N (01 Nisan 2022) MOLECULAR CHARACTERIZATION OF BLACK FOOT DISEASE PATHOGENS IN GRAPEVINE NURSERIES AND EVALUATION OF SOME FUNGICIDES FOR CONTROL OF THE MOST VIRULENT ISOLATES. Trakya University Journal of Natural Sciences 23 1 95–111.
IEEE M. Yıldız ve N. Tosun, “MOLECULAR CHARACTERIZATION OF BLACK FOOT DISEASE PATHOGENS IN GRAPEVINE NURSERIES AND EVALUATION OF SOME FUNGICIDES FOR CONTROL OF THE MOST VIRULENT ISOLATES”, Trakya Univ J Nat Sci, c. 23, sy. 1, ss. 95–111, 2022, doi: 10.23902/trkjnat.1037376.
ISNAD Yıldız, Murat - Tosun, Necip. “MOLECULAR CHARACTERIZATION OF BLACK FOOT DISEASE PATHOGENS IN GRAPEVINE NURSERIES AND EVALUATION OF SOME FUNGICIDES FOR CONTROL OF THE MOST VIRULENT ISOLATES”. Trakya University Journal of Natural Sciences 23/1 (Nisan 2022), 95-111. https://doi.org/10.23902/trkjnat.1037376.
JAMA Yıldız M, Tosun N. MOLECULAR CHARACTERIZATION OF BLACK FOOT DISEASE PATHOGENS IN GRAPEVINE NURSERIES AND EVALUATION OF SOME FUNGICIDES FOR CONTROL OF THE MOST VIRULENT ISOLATES. Trakya Univ J Nat Sci. 2022;23:95–111.
MLA Yıldız, Murat ve Necip Tosun. “MOLECULAR CHARACTERIZATION OF BLACK FOOT DISEASE PATHOGENS IN GRAPEVINE NURSERIES AND EVALUATION OF SOME FUNGICIDES FOR CONTROL OF THE MOST VIRULENT ISOLATES”. Trakya University Journal of Natural Sciences, c. 23, sy. 1, 2022, ss. 95-111, doi:10.23902/trkjnat.1037376.
Vancouver Yıldız M, Tosun N. MOLECULAR CHARACTERIZATION OF BLACK FOOT DISEASE PATHOGENS IN GRAPEVINE NURSERIES AND EVALUATION OF SOME FUNGICIDES FOR CONTROL OF THE MOST VIRULENT ISOLATES. Trakya Univ J Nat Sci. 2022;23(1):95-111.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.