Research Article
BibTex RIS Cite

ATM kinase phosphorylates Ser15 of p53 in a pH-dependent manner

Year 2024, Volume: 25 Issue: 2, 177 - 186, 15.10.2024
https://doi.org/10.23902/trkjnat.1499251

Abstract

The phosphorylation of Ser15 in the transactivation domain (TAD) of the tumor suppressor protein 53 (p53) by ataxia-telangiectasia mutated (ATM) kinase is a crucial step in the tumor suppressor function of p53. An understanding of the factors that affect the rate of Ser15 phosphorylation may provide new strategies for the manipulation of the ATM-p53 pathway in cancer therapy. In this study, the effect of electrostatic interactions between ATM and p53 was investigated by measuring the phosphorylation of Ser15 at varying pH ranges from 5 to 9. To achieve this, two different kinase assay methods were utilized: the ELISA technique, which directly quantifies the phosphorylated Ser15, and the Universal Kinase Assay, which assesses the formation of ADP. The results revealed that Ser15 phosphorylation was pH-dependent, with higher phosphorylation rates observed in the alkaline range. To ascertain whether the lower phosphorylation rates observed at acidic pH were due to protein denaturation, a pH-dependent solubility profile was generated using the CamSol server. The obtained results demonstrated comparable solubility rates within the pH range of the kinase assays performed. Furthermore, the significance of negatively charged residues in TAD1-39 was evaluated by substituting Asp and Glu residues with hydrophobic and uncharged hydrophilic residues in TAD1-39 using ChimeraX and subsequently comparing their interactions with the ATM using the protein-protein docking server HADDOCK2.4. The results of the docking simulations indicated that the alteration of negatively charged residues with uncharged ones resulted in a reduction in the efficiency of the interaction between the ATM and TAD1-39. In conclusion, it can be stated that electrostatic interactions between the ATM and TAD are important for optimal Ser15 phosphorylation.

Ethical Statement

Since the article does not contain any studies with human or animal subject, its approval to the ethics committee was not required.

Supporting Institution

Recep Tayyip Erdogan University Scientific Research Projects Unit and The Scientific and Technological Research Council of Türkiye (TUBİTAK)

Project Number

RTEU-BAP FB-2019 , TUBITAK 116Z360

Thanks

The author would like to thank Professor Ali O. Kılıç (Trabzon, Türkiye) for kindly allowing the use of the cell culture laboratory of Karadeniz Technical University, Medical Microbiology Department, for the production of ATM kinase.

References

  • 1. Ayed, A., Mulder, F.A., Yi, G.S., Lu, Y., Kay, L.E. & Arrowsmith, C.H. 2001. Latent and active p53 are identical in conformation. Nature structural biology, 8(9): 756-760. https://doi.org/10.1038/nsb0901-756
  • 2. Banin, S., Moyal, L., Shieh, L., Taya, Y., Anderson, C.W., Chessa, L., Prives, C., Reiss, Y., Shiloh, Y. & Ziv, Y. 1998. Enhanced Phosphorylation of P53 by ATM in Response to DNA Damage. Science, 281(5383): 1674-77. https://doi.org/10.1126/science.281.5383.1674
  • 3. Baretić, D., Pollard, H.K., Fisher, D.I., Johnson, C.M., Santhanam, B., Truman, C.M. & Williams, R.L. 2017. Structures of closed and open conformations of dimeric human ATM. Science advances, 3(5): e1700933. https://doi.org/10.1126/sciadv.1700933
  • 4. Bouaoun, L., Sonkin, D., Ardin, M., Hollstein, M., Byrnes, G., Zavadil, J. & Olivier, M. 2016. TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Human mutation, 37(9): 865-876. https://doi.org/10.1002/humu.23035
  • 5. Canman, C.E., Lim, D.S., Cimprich, K.A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M.B. & Siliciano, J.D. 1998. Activation of the ATM Kinase by Ionizing Radiation and Phosphorylation of P53. Science, 281(5383): 1677-79. https://doi.org/10.1126/science.281.5383.1677
  • 6. Canman, C.E. & Lim, D.S. 1998. The role of ATM in DNA damage responses and cancer. Oncogene, 17(25), 3301-3308. https://doi.org/10.1038/sj.onc.1202577
  • 7. Chang, J., Kim, D.H., Lee, S.W., Choi K.Y. & Sung, Y.C. 1995. Transactivation Ability of P53 Transcriptional Activation Domain Is Directly Related to the Binding Affinity to TATA-Binding Protein. Journal of Biological Chemistry, 270(42): 25014-25019. https://doi.org/10.1074/jbc.270.42.25014
  • 8. Cheng, J., Dwyer, M., Okolotowicz, K.J., Mercola, M. & Cashman, J.R. 2018. A novel inhibitor targets both Wnt signaling and ATM/p53 in colorectal cancer. Cancer Research, 78(17): 5072-5083. https://doi.org/10.1158/0008-5472.CAN-17-2642
  • 9. Dumaz, N. & Meek, D.W. (1999). Serine 15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. The EMBO journal, 18(24): 7002-7010. https://doi.org/10.1093/emboj/18.24.7002
  • 10. Fadeyi, O.O., Hoth, L.R., Choi, C., Feng, X., Gopalsamy, A., Hett, E.C. & Jones, L.H. 2017. Covalent enzyme inhibition through fluorosulfate modification of a noncatalytic serine residue. ACS Chemical Biology, 12(8): 2015-2020. https://doi.org/10.1021/acschembio.7b00403
  • 11. Feng, H., Lisa M. Miller Jenkins, L.M.M., Durell, S.R., Hayashi, R., Mazur, S.J., Cherry, S., Tropea, J.E., Miller, M., Wlodawer, A., Appella, E. & Bai., Y. 2009. Structural Basis for P300 Taz2-P53 TAD1 Binding and Modulation by Phosphorylation. Structure, 17(2): 202-210. https://doi.org/10.1016/j.str.2008.12.009
  • 12. Froger, A. & Hall, J.E. 2007. Transformation of plasmid DNA into E. coli using the heat shock method. JoVE (Journal of visualized experiments), (6): e253. https://doi.org/10.3791/253
  • 13. Goh, A.M., Coffill, C.R. & Lane, D.P. 2011. The role of mutant p53 in human cancer. The Journal of pathology, 223(2): 116-126. https://doi.org/10.1002/path.2784
  • 14. Grossman, S.R. 2001. p300/CBP/p53 interaction and regulation of the p53 response. European journal of biochemistry, 268(10): 2773-2778. https://doi.org/10.1046/j.1432-1327.2001.02226.x
  • 15. Hansen, S.K., Cancilla, M.T., Shiau, T.P., Kung, J., Chen, T. & Erlanson, D.A. 2005. Allosteric inhibition of PTP1B activity by selective modification of a non-active site cysteine residue. Biochemistry, 44(21), 7704-7712. https://doi.org/10.1021/bi047417s
  • 16. Honorato, R.V., Koukos, P.I., Jiménez-García, B., Tsaregorodtsev, A., Verlato, M., Giachetti, A., Rosato, A. & Bonvin, A.M. 2021. Structural biology in the clouds: the WeNMR-EOSC ecosystem. Frontiers in molecular biosciences, 8: 729513. https://doi.org/10.3389/fmolb.2021.729513
  • 17. Howes, A.C., Perisic, O. & Williams, R.L. 2023. Structural insights into the activation of ataxia-telangiectasia mutated by oxidative stress. Science Advances, 9(39): eadi8291. https://doi.org/10.1126/sciadv.adi8291
  • 18. Jenkins, L.M. M., Durell, S.R., Mazur, S.J. & Appella, E. 2012. p53 N-terminal phosphorylation: a defining layer of complex regulation. Carcinogenesis, 33(8): 1441-1449. https://doi.org/10.1093/carcin/bgs145
  • 19. Kastan, M.B. & Lim, D.S. 2000. The many substrates and functions of ATM. Nature reviews Molecular cell biology, 1(3): 179-186. https://doi.org/10.1038/35043058
  • 20. Kubbutat, M.H., Jones, S.N. & Vousden, K.H. 1997. Regulation of p53 stability by Mdm2. Nature, 387(6630): 299-303. https://doi.org/10.1038/387299a0
  • 21. Li, T., Motta, S., Stevens, A.O., Song, S., Hendrix, E., Pandini, A. & He, Y. 2022. Recognizing the binding pattern and dissociation pathways of the p300 Taz2-p53 TAD2 complex. JACS Au, 2(8): 1935-1945. https://doi.org/10.1021/jacsau.2c00358
  • 22. Li, W., Peng, X., Lang, J. & Xu, C. 2020. Targeting mouse double minute 2: current concepts in DNA damage repair and therapeutic approaches in cancer. Frontiers in Pharmacology, 11: 537486. https://doi.org/10.3389/fphar.2020.00631
  • 23. Lin, H. 2023. Substrate-selective small-molecule modulators of enzymes: mechanisms and opportunities. Current opinion in chemical biology, 72: 102231. https://doi.org/10.1016/j.cbpa.2022.102231
  • 24. Marei, H.E., Althani, A., Afifi, N., Hasan, A., Caceci, T., Pozzoli, G. & Cenciarelli, C. 2021. p53 signaling in cancer progression and therapy. Cancer cell international, 21(1): 703. https://doi.org/10.1186/s12935-021-02396-8
  • 25. Meng, E C., Goddard, T.D., Pettersen, E.F., Couch, G.S., Pearson, Z.J., Morris, J.H. & Ferrin, T.E. 2023. UCSF ChimeraX: Tools for structure building and analysis. Protein Science, 32(11): e4792. https://doi.org/10.1002/pro.4792
  • 26. Miller Jenkins, L.M., Feng, H., Durell, S.R., Tagad, H.D., Mazur, S.J., Tropea, J.E., Bai., T.Y. & Appella, E. 2015. Characterization of the p300 Taz2–p53 TAD2 complex and comparison with the p300 Taz2–p53 TAD1 complex. Biochemistry, 54(11): 2001-2010. https://doi.org/10.1021/acs.biochem.5b00044
  • 27. Ozaki, T. & Nakagawara, A. 2011. Role of p53 in cell death and human cancers. Cancers, 3(1): 994-1013. https://doi.org/10.3390/cancers3010994
  • 28. Sayers, E.W., Bolton, E.E., Brister, J.R., Canese, K., Chan, J., Comeau, D.C., Connor, R., Funk, K., Kelly, C., Kim, S., Madei, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F. & Sherry, S.T. 2022. Database resources of the national center for biotechnology information. Nucleic acids research, 50(D1): 20-26. https://doi.org/10.1093/nar/gkab1112
  • 29. Schaefer, M., Sommer, M. & Karplus, M. 1997. pH-dependence of protein stability: absolute electrostatic free energy differences between conformations. The Journal of Physical Chemistry B, 101(9): 1663-1683. https://doi.org/10.1021/jp962972s
  • 30. Schreiber, G., Haran, G. & Zhou, H.X. 2009. Fundamental aspects of protein− protein association kinetics. Chemical reviews, 109(3): 839-860. https://doi.org/10.1021/cr800373w
  • 31. Shapiro, A.L., Viñuela, E. & Maizel Jr, J.V. 1967. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochemical and biophysical research communications, 28(5): 815-820. https://doi.org/10.1016/0006-291X(67)90391-9
  • 32. Sormanni, P., Aprile, F.A. & Vendruscolo, M. 2015. The CamSol method of rational design of protein mutants with enhanced solubility. Journal of molecular biology, 427(2): 478-490. https://doi.org/10.1016/j.jmb.2014.09.026
  • 33. Teufel, D.P., Bycroft, M. & Fersht, A.R. 2009. Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2. Oncogene, 28(20): 2112-2118. https://doi.org/10.1038/onc.2009.71
  • 34. Tollinger, M., Crowhurst, K.A., Kay, L.E. & Forman-Kay, J.D. 2003. Site-specific contributions to the pH dependence of protein stability. Proceedings of the National Academy of Sciences, 100(8), 4545-4550. https://doi.org/10.1073/pnas.0736600100
  • 35. Traven, A. & Heierhorst, J. 2005. SQ/TQ cluster domains: concentrated ATM/ATR kinase phosphorylation site regions in DNA‐damage‐response proteins. Bioessays, 27(4), 397-407. https://doi.org/10.1002/bies.20204
  • 36. Wilkins, M.R., Gasteiger, E., Bairoch, A., Sanchez, J.C., Williams, K.L., Appel, R.D. & Hochstrasser, D. F. 1999. Protein Identification and Analysis Tools in the ExPASy Server. Methods in Molecular Biology, 112: 531-532. https://doi.org/10.1385/1-59259-584-7:531
  • 37. Van Zundert, G.C.P., Rodrigues, J.P.G.L.M., Trellet, M., Schmitz, C., Kastritis, P.L., Karaca, E., Melquiond, A.S.J. & Bonvin, A.M.J.J. 2016. The HADDOCK2. 2 web server: user-friendly integrative modeling of biomolecular complexes. Journal of molecular biology, 428(4): 720-725. https://doi.org/10.1016/j.jmb.2015.09.014
  • 38. Yogosawa, S. & Yoshida, K. 2018. Tumor suppressive role for kinases phosphorylating p53 in DNA damage‐induced apoptosis. Cancer science, 109(11): 3376-3382. https://doi.org/10.1111/cas.13792
  • 39. Zhou, H.X. & Pang, X. 2018. Electrostatic interactions in protein structure, folding, binding, and condensation. Chemical reviews, 118(4): 1691-1741. https://doi.org/10.1021/acs.chemrev.7b00305
Year 2024, Volume: 25 Issue: 2, 177 - 186, 15.10.2024
https://doi.org/10.23902/trkjnat.1499251

Abstract

Tümör baskılayıcı protein 53'ün (p53) transaktivasyon domainindeki (TAD) Ser15'in ataksi-telenjiektazi mutasyonlu (ATM) kinaz tarafından fosforilasyonu, p53'ün tümör baskılayıcı işlevinde çok önemli bir adımdır. Ser15 fosforilasyon oranını etkileyen faktörlerin anlaşılması, kanser tedavisinde ATM-p53 yolağının manipülasyonu için yeni stratejiler sağlayabilir. Bu çalışmada, ATM ve p53 arasındaki elektrostatik etkileşimlerin etkisi, Ser15'in 5 ila 9 arasında değişen pH aralıklarında fosforilasyonu ölçülerek araştırılmıştır. Bunu başarmak için iki farklı kinaz tahlil yöntemi kullanılmıştır: fosforile Ser15'i doğrudan ölçen ELISA tekniği ve ADP oluşumunu değerlendiren Universal Kinase Assay. Sonuçlar, Ser15 fosforilasyonunun pH'a bağlı olduğunu ve alkali aralıkta daha yüksek fosforilasyon oranlarının gözlendiğini ortaya koymuştur. Asidik pH'da gözlenen daha düşük fosforilasyon oranlarının protein denatürasyonundan kaynaklanıp kaynaklanmadığını tespit etmek için CamSol sunucusu kullanılarak pH'ya bağlı bir çözünürlük profili oluşturulmuştur. Elde edilen sonuçlar, gerçekleştirilen kinaz deneylerinin pH aralığı içinde karşılaştırılabilir çözünürlük oranları göstermiştir. Ayrıca, TAD1-39'daki negatif yüklü kalıntıların önemi, ChimeraX kullanılarak TAD1-39'daki Asp ve Glu kalıntılarının hidrofobik ve yüksüz hidrofilik kalıntılarla değiştirilmesi ve ardından protein-protein yerleştirme sunucusu HADDOCK2.4 kullanılarak ATM ile etkileşimlerinin karşılaştırılmasıyla değerlendirilmiştir. Yerleştirme simülasyonlarının sonuçları, negatif yüklü kalıntıların yüksüz olanlarla değiştirilmesinin ATM ve TAD1-39 arasındaki etkileşimin etkinliğinde bir azalmaya yol açtığını göstermiştir. Sonuç olarak, ATM ve TAD arasındaki elektrostatik etkileşimlerin optimal Ser15 fosforilasyonu için önemli olduğu söylenebilir.

Project Number

RTEU-BAP FB-2019 , TUBITAK 116Z360

References

  • 1. Ayed, A., Mulder, F.A., Yi, G.S., Lu, Y., Kay, L.E. & Arrowsmith, C.H. 2001. Latent and active p53 are identical in conformation. Nature structural biology, 8(9): 756-760. https://doi.org/10.1038/nsb0901-756
  • 2. Banin, S., Moyal, L., Shieh, L., Taya, Y., Anderson, C.W., Chessa, L., Prives, C., Reiss, Y., Shiloh, Y. & Ziv, Y. 1998. Enhanced Phosphorylation of P53 by ATM in Response to DNA Damage. Science, 281(5383): 1674-77. https://doi.org/10.1126/science.281.5383.1674
  • 3. Baretić, D., Pollard, H.K., Fisher, D.I., Johnson, C.M., Santhanam, B., Truman, C.M. & Williams, R.L. 2017. Structures of closed and open conformations of dimeric human ATM. Science advances, 3(5): e1700933. https://doi.org/10.1126/sciadv.1700933
  • 4. Bouaoun, L., Sonkin, D., Ardin, M., Hollstein, M., Byrnes, G., Zavadil, J. & Olivier, M. 2016. TP53 variations in human cancers: new lessons from the IARC TP53 database and genomics data. Human mutation, 37(9): 865-876. https://doi.org/10.1002/humu.23035
  • 5. Canman, C.E., Lim, D.S., Cimprich, K.A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M.B. & Siliciano, J.D. 1998. Activation of the ATM Kinase by Ionizing Radiation and Phosphorylation of P53. Science, 281(5383): 1677-79. https://doi.org/10.1126/science.281.5383.1677
  • 6. Canman, C.E. & Lim, D.S. 1998. The role of ATM in DNA damage responses and cancer. Oncogene, 17(25), 3301-3308. https://doi.org/10.1038/sj.onc.1202577
  • 7. Chang, J., Kim, D.H., Lee, S.W., Choi K.Y. & Sung, Y.C. 1995. Transactivation Ability of P53 Transcriptional Activation Domain Is Directly Related to the Binding Affinity to TATA-Binding Protein. Journal of Biological Chemistry, 270(42): 25014-25019. https://doi.org/10.1074/jbc.270.42.25014
  • 8. Cheng, J., Dwyer, M., Okolotowicz, K.J., Mercola, M. & Cashman, J.R. 2018. A novel inhibitor targets both Wnt signaling and ATM/p53 in colorectal cancer. Cancer Research, 78(17): 5072-5083. https://doi.org/10.1158/0008-5472.CAN-17-2642
  • 9. Dumaz, N. & Meek, D.W. (1999). Serine 15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. The EMBO journal, 18(24): 7002-7010. https://doi.org/10.1093/emboj/18.24.7002
  • 10. Fadeyi, O.O., Hoth, L.R., Choi, C., Feng, X., Gopalsamy, A., Hett, E.C. & Jones, L.H. 2017. Covalent enzyme inhibition through fluorosulfate modification of a noncatalytic serine residue. ACS Chemical Biology, 12(8): 2015-2020. https://doi.org/10.1021/acschembio.7b00403
  • 11. Feng, H., Lisa M. Miller Jenkins, L.M.M., Durell, S.R., Hayashi, R., Mazur, S.J., Cherry, S., Tropea, J.E., Miller, M., Wlodawer, A., Appella, E. & Bai., Y. 2009. Structural Basis for P300 Taz2-P53 TAD1 Binding and Modulation by Phosphorylation. Structure, 17(2): 202-210. https://doi.org/10.1016/j.str.2008.12.009
  • 12. Froger, A. & Hall, J.E. 2007. Transformation of plasmid DNA into E. coli using the heat shock method. JoVE (Journal of visualized experiments), (6): e253. https://doi.org/10.3791/253
  • 13. Goh, A.M., Coffill, C.R. & Lane, D.P. 2011. The role of mutant p53 in human cancer. The Journal of pathology, 223(2): 116-126. https://doi.org/10.1002/path.2784
  • 14. Grossman, S.R. 2001. p300/CBP/p53 interaction and regulation of the p53 response. European journal of biochemistry, 268(10): 2773-2778. https://doi.org/10.1046/j.1432-1327.2001.02226.x
  • 15. Hansen, S.K., Cancilla, M.T., Shiau, T.P., Kung, J., Chen, T. & Erlanson, D.A. 2005. Allosteric inhibition of PTP1B activity by selective modification of a non-active site cysteine residue. Biochemistry, 44(21), 7704-7712. https://doi.org/10.1021/bi047417s
  • 16. Honorato, R.V., Koukos, P.I., Jiménez-García, B., Tsaregorodtsev, A., Verlato, M., Giachetti, A., Rosato, A. & Bonvin, A.M. 2021. Structural biology in the clouds: the WeNMR-EOSC ecosystem. Frontiers in molecular biosciences, 8: 729513. https://doi.org/10.3389/fmolb.2021.729513
  • 17. Howes, A.C., Perisic, O. & Williams, R.L. 2023. Structural insights into the activation of ataxia-telangiectasia mutated by oxidative stress. Science Advances, 9(39): eadi8291. https://doi.org/10.1126/sciadv.adi8291
  • 18. Jenkins, L.M. M., Durell, S.R., Mazur, S.J. & Appella, E. 2012. p53 N-terminal phosphorylation: a defining layer of complex regulation. Carcinogenesis, 33(8): 1441-1449. https://doi.org/10.1093/carcin/bgs145
  • 19. Kastan, M.B. & Lim, D.S. 2000. The many substrates and functions of ATM. Nature reviews Molecular cell biology, 1(3): 179-186. https://doi.org/10.1038/35043058
  • 20. Kubbutat, M.H., Jones, S.N. & Vousden, K.H. 1997. Regulation of p53 stability by Mdm2. Nature, 387(6630): 299-303. https://doi.org/10.1038/387299a0
  • 21. Li, T., Motta, S., Stevens, A.O., Song, S., Hendrix, E., Pandini, A. & He, Y. 2022. Recognizing the binding pattern and dissociation pathways of the p300 Taz2-p53 TAD2 complex. JACS Au, 2(8): 1935-1945. https://doi.org/10.1021/jacsau.2c00358
  • 22. Li, W., Peng, X., Lang, J. & Xu, C. 2020. Targeting mouse double minute 2: current concepts in DNA damage repair and therapeutic approaches in cancer. Frontiers in Pharmacology, 11: 537486. https://doi.org/10.3389/fphar.2020.00631
  • 23. Lin, H. 2023. Substrate-selective small-molecule modulators of enzymes: mechanisms and opportunities. Current opinion in chemical biology, 72: 102231. https://doi.org/10.1016/j.cbpa.2022.102231
  • 24. Marei, H.E., Althani, A., Afifi, N., Hasan, A., Caceci, T., Pozzoli, G. & Cenciarelli, C. 2021. p53 signaling in cancer progression and therapy. Cancer cell international, 21(1): 703. https://doi.org/10.1186/s12935-021-02396-8
  • 25. Meng, E C., Goddard, T.D., Pettersen, E.F., Couch, G.S., Pearson, Z.J., Morris, J.H. & Ferrin, T.E. 2023. UCSF ChimeraX: Tools for structure building and analysis. Protein Science, 32(11): e4792. https://doi.org/10.1002/pro.4792
  • 26. Miller Jenkins, L.M., Feng, H., Durell, S.R., Tagad, H.D., Mazur, S.J., Tropea, J.E., Bai., T.Y. & Appella, E. 2015. Characterization of the p300 Taz2–p53 TAD2 complex and comparison with the p300 Taz2–p53 TAD1 complex. Biochemistry, 54(11): 2001-2010. https://doi.org/10.1021/acs.biochem.5b00044
  • 27. Ozaki, T. & Nakagawara, A. 2011. Role of p53 in cell death and human cancers. Cancers, 3(1): 994-1013. https://doi.org/10.3390/cancers3010994
  • 28. Sayers, E.W., Bolton, E.E., Brister, J.R., Canese, K., Chan, J., Comeau, D.C., Connor, R., Funk, K., Kelly, C., Kim, S., Madei, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F. & Sherry, S.T. 2022. Database resources of the national center for biotechnology information. Nucleic acids research, 50(D1): 20-26. https://doi.org/10.1093/nar/gkab1112
  • 29. Schaefer, M., Sommer, M. & Karplus, M. 1997. pH-dependence of protein stability: absolute electrostatic free energy differences between conformations. The Journal of Physical Chemistry B, 101(9): 1663-1683. https://doi.org/10.1021/jp962972s
  • 30. Schreiber, G., Haran, G. & Zhou, H.X. 2009. Fundamental aspects of protein− protein association kinetics. Chemical reviews, 109(3): 839-860. https://doi.org/10.1021/cr800373w
  • 31. Shapiro, A.L., Viñuela, E. & Maizel Jr, J.V. 1967. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochemical and biophysical research communications, 28(5): 815-820. https://doi.org/10.1016/0006-291X(67)90391-9
  • 32. Sormanni, P., Aprile, F.A. & Vendruscolo, M. 2015. The CamSol method of rational design of protein mutants with enhanced solubility. Journal of molecular biology, 427(2): 478-490. https://doi.org/10.1016/j.jmb.2014.09.026
  • 33. Teufel, D.P., Bycroft, M. & Fersht, A.R. 2009. Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2. Oncogene, 28(20): 2112-2118. https://doi.org/10.1038/onc.2009.71
  • 34. Tollinger, M., Crowhurst, K.A., Kay, L.E. & Forman-Kay, J.D. 2003. Site-specific contributions to the pH dependence of protein stability. Proceedings of the National Academy of Sciences, 100(8), 4545-4550. https://doi.org/10.1073/pnas.0736600100
  • 35. Traven, A. & Heierhorst, J. 2005. SQ/TQ cluster domains: concentrated ATM/ATR kinase phosphorylation site regions in DNA‐damage‐response proteins. Bioessays, 27(4), 397-407. https://doi.org/10.1002/bies.20204
  • 36. Wilkins, M.R., Gasteiger, E., Bairoch, A., Sanchez, J.C., Williams, K.L., Appel, R.D. & Hochstrasser, D. F. 1999. Protein Identification and Analysis Tools in the ExPASy Server. Methods in Molecular Biology, 112: 531-532. https://doi.org/10.1385/1-59259-584-7:531
  • 37. Van Zundert, G.C.P., Rodrigues, J.P.G.L.M., Trellet, M., Schmitz, C., Kastritis, P.L., Karaca, E., Melquiond, A.S.J. & Bonvin, A.M.J.J. 2016. The HADDOCK2. 2 web server: user-friendly integrative modeling of biomolecular complexes. Journal of molecular biology, 428(4): 720-725. https://doi.org/10.1016/j.jmb.2015.09.014
  • 38. Yogosawa, S. & Yoshida, K. 2018. Tumor suppressive role for kinases phosphorylating p53 in DNA damage‐induced apoptosis. Cancer science, 109(11): 3376-3382. https://doi.org/10.1111/cas.13792
  • 39. Zhou, H.X. & Pang, X. 2018. Electrostatic interactions in protein structure, folding, binding, and condensation. Chemical reviews, 118(4): 1691-1741. https://doi.org/10.1021/acs.chemrev.7b00305
There are 39 citations in total.

Details

Primary Language English
Subjects Enzymes
Journal Section Research Article/Araştırma Makalesi
Authors

Serap Pektaş 0000-0003-0497-6257

Project Number RTEU-BAP FB-2019 , TUBITAK 116Z360
Early Pub Date September 25, 2024
Publication Date October 15, 2024
Submission Date June 11, 2024
Acceptance Date September 6, 2024
Published in Issue Year 2024 Volume: 25 Issue: 2

Cite

APA Pektaş, S. (2024). ATM kinase phosphorylates Ser15 of p53 in a pH-dependent manner. Trakya University Journal of Natural Sciences, 25(2), 177-186. https://doi.org/10.23902/trkjnat.1499251
AMA Pektaş S. ATM kinase phosphorylates Ser15 of p53 in a pH-dependent manner. Trakya Univ J Nat Sci. October 2024;25(2):177-186. doi:10.23902/trkjnat.1499251
Chicago Pektaş, Serap. “ATM Kinase Phosphorylates Ser15 of p53 in a PH-Dependent Manner”. Trakya University Journal of Natural Sciences 25, no. 2 (October 2024): 177-86. https://doi.org/10.23902/trkjnat.1499251.
EndNote Pektaş S (October 1, 2024) ATM kinase phosphorylates Ser15 of p53 in a pH-dependent manner. Trakya University Journal of Natural Sciences 25 2 177–186.
IEEE S. Pektaş, “ATM kinase phosphorylates Ser15 of p53 in a pH-dependent manner”, Trakya Univ J Nat Sci, vol. 25, no. 2, pp. 177–186, 2024, doi: 10.23902/trkjnat.1499251.
ISNAD Pektaş, Serap. “ATM Kinase Phosphorylates Ser15 of p53 in a PH-Dependent Manner”. Trakya University Journal of Natural Sciences 25/2 (October 2024), 177-186. https://doi.org/10.23902/trkjnat.1499251.
JAMA Pektaş S. ATM kinase phosphorylates Ser15 of p53 in a pH-dependent manner. Trakya Univ J Nat Sci. 2024;25:177–186.
MLA Pektaş, Serap. “ATM Kinase Phosphorylates Ser15 of p53 in a PH-Dependent Manner”. Trakya University Journal of Natural Sciences, vol. 25, no. 2, 2024, pp. 177-86, doi:10.23902/trkjnat.1499251.
Vancouver Pektaş S. ATM kinase phosphorylates Ser15 of p53 in a pH-dependent manner. Trakya Univ J Nat Sci. 2024;25(2):177-86.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.