Buckling performance of thin-walled filled steel columns
Year 2023,
, 172 - 179, 05.07.2023
Abdulkerim İlgün
,
Ahmad Javid Zıa
,
Sadrettin Sancıoğlu
,
Hasan Furkan Soydoğan
,
Münife Hanım Köklü
,
Semih Arıbaş
,
Berna Bayram
Abstract
Concrete-filled composite elements have recently gained popularity as beams and columns all over the world. They have advantages similar to reinforced concrete elements, such as the moulding process and the lack of maintenance of the filled concrete, as well as advantages similar to hollow steel elements, such as enhancing compressive strength and bending capacity by using smaller sections. In this paper, the buckling behaviour of thin-walled steel columns with circular cross-section and different filling materials was investigated under uniaxial load. Six different materials (concrete produced using normal aggregate, concrete produced using waste aggregate, waste fine aggregate, waste coarse aggregate, waste iron dust and polyurethane) were used as filling. Filled columns were compared experimentally with hollow thin-walled steel columns that had the same height and diameter. All specimens had the same length (750 mm), same diameter (60.3mm) and the same wall thickness (3mm). Experimental results were compared with analytical results obtained from a calculation done using the national steel design code, Design, Calculation and Construction Principles of Steel Structures 2016. Additionally, columns specimens were modelled in Abaqus software. Conservative and consistent results were obtained from comparing experimental, analytical, and numerical results.
References
- Sancıoğlu, S. (2020). Experimental and Analytical Investigation of Bending Effects of Concrete Filled Composite Beams. KTO Karatay University.
- Abed, F., Alhamaydeh, M., & Abdalla, S. (2013). Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs). Journal of Constructional Steel Research, 80, 429–439. https://doi.org/10.1016/j.jcsr.2012.10.005
- Lin-Hai Han, Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete- fi lled steel tubular (CFST) structures: Members Concrete Cracks. Journal of Constructional Steel Research, 100, 211–228. https://doi.org/10.1016/j.jcsr.2014.04.016
- Lu, Y., Li, N., Li, S., & Liang, H. (2015). Behavior of steel fiber reinforced concrete-filled steel tube columns under axial compression. Construction and Building Materials, 95, 74–85. https://doi.org/10.1016/j.conbuildmat.2015.07.114
- Wang, Y. H., Wu, Q., Yu, J., Frank Chen, Y., & Lu, G. B. (2018). Experimental and analytical studies on elastic-plastic local buckling behavior of steel material under complex cyclic loading paths. Construction and Building Materials, 181, 495–509. https://doi.org/10.1016/j.conbuildmat.2018.06.031
- Zhu, J. Y., & Chan, T. M. (2018). Experimental investigation on octagonal concrete filled steel stub columns under uniaxial compression. Journal of Constructional Steel Research, 147, 457–467. https://doi.org/10.1016/j.jcsr.2018.04.030
- Abramski, M. (2018a). Load-carrying capacity of axially loaded concrete-filled steel tubular columns made of thin tubes. Archives of Civil and Mechanical Engineering, 18(3), 902–913. https://doi.org/10.1016/j.acme.2018.01.002
- İlgün, A., Can, H., Bayram, B., Arıbaş, S., Zia, J., & Sancıoğlu, S. (2019). Eksenel Yük Etkisi Altında İnce Cidarlı Çelik Kolonların Deneysel Olarak İncelenmesi. 7. Yapı Mekaniği Laboratuvarları Çalıştayı, 187–192.
- Han, L. H. (2004). Flexural behaviour of concrete-filled steel tubes. Journal of Constructional Steel Research, 60(2), 313–337. https://doi.org/10.1016/j.jcsr.2003.08.009
- Zeghiche, J., & Chaoui, K. (2005). An experimental behaviour of concrete-filled steel tubular columns. Journal of Constructional Steel Research, 61(1), 53–66. https://doi.org/10.1016/j.jcsr.2004.06.006
- Abramski, M. (2018b). Load-carrying capacity of axially loaded concrete-filled steel tubular columns made of thin tubes. Archives of Civil and Mechanical Engineering, 18(3), 902–913. https://doi.org/10.1016/j.acme.2018.01.002
- Essopjee, Y., & Dundu, M. (2015). Performance of concrete-filled double-skin circular tubes in compression. Composite Structures, 133(1), 1276–1283. https://doi.org/https://doi.org/10.1016/j.compstruct.2015.08.033
- Ibañez, C., Hernández-Figueirido, D., & Piquer, A. (2018). Shape effect on axially loaded high strength CFST stub columns. Journal of Constructional Steel Research, 147, 247–256. https://doi.org/10.1016/j.jcsr.2018.04.005
- Liang, Q. Q., & Fragomeni, S. (2010). Nonlinear analysis of circular concrete-filled steel tubular short columns under eccentric loading. Journal of Constructional Steel Research, 66(2), 159–169. https://doi.org/10.1016/j.jcsr.2009.09.008
- Tan, K., & Nichols, J. M. (2017). Properties of high-strength concrete filled steel tube columns. Computing in Science and Engineering, 1(1), 58–77. https://doi.org/10.22606/mcse.2017.11005
- Roeder, C. W., Lehman, D. E., & Bishop, E. (2010). Strength and Stiffness of Circular Concrete-Filled Tubes. Journal of Structural Engineering, 136(12), 1545–1553. https://doi.org/10.1061/(asce)st.1943-541x.0000263
- Abed, F. H., Abdelmageed, Y. I., & Kerim Ilgun, A. (2018). Flexural response of concrete-filled seamless steel tubes. Journal of Constructional Steel Research, 149, 53–63. https://doi.org/10.1016/j.jcsr.2018.06.030
- Duarte, A. P. C., Silva, B. A., Silvestre, N., de Brito, J., Júlio, E., & Castro, J. M. (2016). Finite element modelling of short steel tubes filled with rubberized concrete. Composite Structures, 150, 28–40. https://doi.org/10.1016/j.compstruct.2016.04.048
- Hassanein, M. F., Patel, V. I., Elchalakani, M., & Thai, H. T. (2018). Finite element analysis of large diameter high strength octagonal CFST short columns. Thin-Walled Structures, 123(November 2017), 467–482. https://doi.org/10.1016/j.tws.2017.11.007
- Al-Ani, Y. R. (2018). Finite element study to address the axial capacity of the circular concrete-filled steel tubular stub columns. Thin-Walled Structures, 126(June 2017), 2–15. https://doi.org/10.1016/j.tws.2017.06.005
- Saleh, S., & Al-Abboodi, İ. (2021). Strength and Behaviour Assessment of Axially Loaded Concrete Filled Steel Tubular Stub Columns. Turkish Journal of Engineering, 5(4), 154–164. https://doi.org/10.31127/tuje.686246
- Design, Calculation and Construction Principles of Steel Structures. (2016). Ministry of Environment and Urbanisation.
- Abaqus. (2010). Abaqus/CAE User Manual. Dassault Systems.
- Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M. S. Bin, & Karimzade, K. (2017). Simplified damage plasticity model for concrete. Structural Engineering International, 27(1), 68–78. https://doi.org/10.2749/101686616X1081
Year 2023,
, 172 - 179, 05.07.2023
Abdulkerim İlgün
,
Ahmad Javid Zıa
,
Sadrettin Sancıoğlu
,
Hasan Furkan Soydoğan
,
Münife Hanım Köklü
,
Semih Arıbaş
,
Berna Bayram
References
- Sancıoğlu, S. (2020). Experimental and Analytical Investigation of Bending Effects of Concrete Filled Composite Beams. KTO Karatay University.
- Abed, F., Alhamaydeh, M., & Abdalla, S. (2013). Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs). Journal of Constructional Steel Research, 80, 429–439. https://doi.org/10.1016/j.jcsr.2012.10.005
- Lin-Hai Han, Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete- fi lled steel tubular (CFST) structures: Members Concrete Cracks. Journal of Constructional Steel Research, 100, 211–228. https://doi.org/10.1016/j.jcsr.2014.04.016
- Lu, Y., Li, N., Li, S., & Liang, H. (2015). Behavior of steel fiber reinforced concrete-filled steel tube columns under axial compression. Construction and Building Materials, 95, 74–85. https://doi.org/10.1016/j.conbuildmat.2015.07.114
- Wang, Y. H., Wu, Q., Yu, J., Frank Chen, Y., & Lu, G. B. (2018). Experimental and analytical studies on elastic-plastic local buckling behavior of steel material under complex cyclic loading paths. Construction and Building Materials, 181, 495–509. https://doi.org/10.1016/j.conbuildmat.2018.06.031
- Zhu, J. Y., & Chan, T. M. (2018). Experimental investigation on octagonal concrete filled steel stub columns under uniaxial compression. Journal of Constructional Steel Research, 147, 457–467. https://doi.org/10.1016/j.jcsr.2018.04.030
- Abramski, M. (2018a). Load-carrying capacity of axially loaded concrete-filled steel tubular columns made of thin tubes. Archives of Civil and Mechanical Engineering, 18(3), 902–913. https://doi.org/10.1016/j.acme.2018.01.002
- İlgün, A., Can, H., Bayram, B., Arıbaş, S., Zia, J., & Sancıoğlu, S. (2019). Eksenel Yük Etkisi Altında İnce Cidarlı Çelik Kolonların Deneysel Olarak İncelenmesi. 7. Yapı Mekaniği Laboratuvarları Çalıştayı, 187–192.
- Han, L. H. (2004). Flexural behaviour of concrete-filled steel tubes. Journal of Constructional Steel Research, 60(2), 313–337. https://doi.org/10.1016/j.jcsr.2003.08.009
- Zeghiche, J., & Chaoui, K. (2005). An experimental behaviour of concrete-filled steel tubular columns. Journal of Constructional Steel Research, 61(1), 53–66. https://doi.org/10.1016/j.jcsr.2004.06.006
- Abramski, M. (2018b). Load-carrying capacity of axially loaded concrete-filled steel tubular columns made of thin tubes. Archives of Civil and Mechanical Engineering, 18(3), 902–913. https://doi.org/10.1016/j.acme.2018.01.002
- Essopjee, Y., & Dundu, M. (2015). Performance of concrete-filled double-skin circular tubes in compression. Composite Structures, 133(1), 1276–1283. https://doi.org/https://doi.org/10.1016/j.compstruct.2015.08.033
- Ibañez, C., Hernández-Figueirido, D., & Piquer, A. (2018). Shape effect on axially loaded high strength CFST stub columns. Journal of Constructional Steel Research, 147, 247–256. https://doi.org/10.1016/j.jcsr.2018.04.005
- Liang, Q. Q., & Fragomeni, S. (2010). Nonlinear analysis of circular concrete-filled steel tubular short columns under eccentric loading. Journal of Constructional Steel Research, 66(2), 159–169. https://doi.org/10.1016/j.jcsr.2009.09.008
- Tan, K., & Nichols, J. M. (2017). Properties of high-strength concrete filled steel tube columns. Computing in Science and Engineering, 1(1), 58–77. https://doi.org/10.22606/mcse.2017.11005
- Roeder, C. W., Lehman, D. E., & Bishop, E. (2010). Strength and Stiffness of Circular Concrete-Filled Tubes. Journal of Structural Engineering, 136(12), 1545–1553. https://doi.org/10.1061/(asce)st.1943-541x.0000263
- Abed, F. H., Abdelmageed, Y. I., & Kerim Ilgun, A. (2018). Flexural response of concrete-filled seamless steel tubes. Journal of Constructional Steel Research, 149, 53–63. https://doi.org/10.1016/j.jcsr.2018.06.030
- Duarte, A. P. C., Silva, B. A., Silvestre, N., de Brito, J., Júlio, E., & Castro, J. M. (2016). Finite element modelling of short steel tubes filled with rubberized concrete. Composite Structures, 150, 28–40. https://doi.org/10.1016/j.compstruct.2016.04.048
- Hassanein, M. F., Patel, V. I., Elchalakani, M., & Thai, H. T. (2018). Finite element analysis of large diameter high strength octagonal CFST short columns. Thin-Walled Structures, 123(November 2017), 467–482. https://doi.org/10.1016/j.tws.2017.11.007
- Al-Ani, Y. R. (2018). Finite element study to address the axial capacity of the circular concrete-filled steel tubular stub columns. Thin-Walled Structures, 126(June 2017), 2–15. https://doi.org/10.1016/j.tws.2017.06.005
- Saleh, S., & Al-Abboodi, İ. (2021). Strength and Behaviour Assessment of Axially Loaded Concrete Filled Steel Tubular Stub Columns. Turkish Journal of Engineering, 5(4), 154–164. https://doi.org/10.31127/tuje.686246
- Design, Calculation and Construction Principles of Steel Structures. (2016). Ministry of Environment and Urbanisation.
- Abaqus. (2010). Abaqus/CAE User Manual. Dassault Systems.
- Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M. S. Bin, & Karimzade, K. (2017). Simplified damage plasticity model for concrete. Structural Engineering International, 27(1), 68–78. https://doi.org/10.2749/101686616X1081