Research Article
BibTex RIS Cite

Impact of Hybrid Nanoparticle Inclusion and Fiber Layer Arrangement on the Jute/Kenaf/Glass Fiber Composite Laminates

Year 2026, Volume: 10 Issue: 1, 103 - 115, 16.12.2025
https://doi.org/10.31127/tuje.1799682

Abstract

This study investigates the mechanical and thermal characteristics of hybrid composites made from jute, kenaf, and glass fibers, reinforced with varying proportions of nanographene nanoparticles and multi-walled carbon nanotubes (MWCNTs). Different nanofiller loadings were incorporated into composite samples and tested for tensile strength, flexural strength, fracture toughness, microhardness, moisture absorption, and thermal stability. Tensile and flexural tests assessed mechanical performance, while fracture toughness and microhardness measured resistance to crack initiation and surface deformation. Moisture absorption tests showed a significant reduction in water uptake with increasing nanographene and MWCNT content, indicating enhanced hydrophobicity and improved durability in humid environments. Thermal stability and degradation behavior were analyzed through thermogravimetric analysis (TGA), revealing that MWCNT addition positively influenced thermal resistance. Optimal mechanical and thermal properties were achieved with filler concentrations of 2 wt.% for MWCNTs and 3 wt.% for nanographene. These enhancements collectively demonstrate that reinforcing natural fiber-based hybrid composites with nanographene and MWCNTs significantly improves their strength, moisture resistance, and thermal stability. Utilizing natural resources such as jute and kenaf fibers supports sustainable development by providing eco-friendly alternatives to synthetic materials. As a result, these composites have promising potential as sustainable and high-performance alternatives to conventional structural materials in advanced engineering applications, particularly where enhanced durability and environmental exposure resistance are required.

References

  • Menachery, N., Deepanraj, B., & Thomas, S. (2025). Characterization and analysis of carbon fiber and nano hBN reinforced hybrid Aluminium Metal Matrix Composites by conventional sintering. Turkish Journal of Engineering, 9(2), 378-384.
  • Sudharsan and Madhu, S. (2024, November). Evaluation of surface roughness during abrasive waterjet in jute bamboo natural hybrid polymer composites with and without the addition of novel strombus filler. In AIP Conference Proceedings (Vol. 3193, No. 1, p. 020132). AIP Publishing LLC.
  • Gnanasekaran, K., Rajesh, M., & Hariram, V. (2025). Optimizing abrasive water jet parameters for enhanced interactivity in metal-stacked hybrid fiber laminates. Turkish Journal of Engineering, 9(1), 28-36.
  • Arunachalam, S.J. and Saravanan, R., 2024. Comprehensive Insights of Chemically Treated Jute/Kenaf/Glass Fiber with TiO2 nanoparticle using RSM optimization. J. Environ. Nanotechnol, 13(2), pp.21-30.
  • Arunachalam, S.J., Saravanan, R., Sathish, T. and Parthiban, A. (2024). Comprehensive insights on mechanical properties of natural-synthetic fibres with nano-graphene composite. Interactions, 245(1), p.82.
  • Soydan, Z., Şahin, F. İ., & Acaralı, N. (2024). Advancements in polymeric matrix composite production: A review on methods and approaches. Turkish Journal of Engineering, 8(4), 677-686.
  • Jothi Arunachalam, S., Saravanan, R., Sathish, T. and Venkatesh, R., 2025. Integration of nanographene and action of fiber sequences on functional behaviour of composite laminates. International Polymer Processing, 40(2), pp.205-215.
  • Skosana, S. J., Khoathane, C., & Malwela, T. (2025). Driving towards sustainability: A review of natural fiber reinforced polymer composites for eco-friendly automotive light-weighting. Journal of Composite Science, 9(2), 145-167.
  • Khurshid, F., & Günal, A. Y. (2024). Harnessing earthquake generated glass and plastic waste for sustainable construction. Turkish Journal of Engineering, 8(2), 394-402.
  • Sanjay, M. R., & Yogesha, B. (2023). Studies on hybridization effect of jute/kenaf/E-glass woven fabric epoxy composites for potential applications: Effect of laminate stacking sequences. Journal of Reinforced Plastics and Composites, 42(4), 280-299.
  • Kılınçarslan, Ş., & Türker, Y. Ş. (2022). Strengthening of solid beam with fiber reinforced polymers. Turkish Journal of Engineering, 7(3), 166-171.
  • Nguyen, T. H., Tran, Q. P., & Le, H. T. (2024). Effect of multi-walled carbon nanotube reinforcement on moisture absorption and mechanical behavior of hybrid natural fiber composites. Composites Part B: Engineering, 220, 109124.
  • Rao, K. P., Rajeev, R., & Kumar, S. (2024). Thermomechanical performance of nanographene reinforced hybrid fiber composites for automotive applications. Materials & Design, 246, 111565.
  • Ramu, S., Harihara, D., & Mohan, M. R. (2024). Alkali and non-alkali treated coconut coir fiber-reinforced coconut shell powder/MWCNT-filled polyester matrix composite: An experimental comparison. Journal of Composite Materials, 58(5), pp. 1432–1445.
  • Sharma, N., Singh, H., & Kumar, A. (2024). Microstructural and mechanical property enhancement of aluminum matrix composites reinforced with multi-walled carbon nanotubes. Materials Science and Engineering A, 820, 141282.
  • Muthuvelu, V. S., Kumaresan Gladys, A., Anbukumar, M. P., Dhanasekaran, K., & Jayamami, E. (2025). Effect of nanographene addition on dielectric, mechanical and flame retardation properties of snake grass fiber/kevlar epoxy composites. Journal of Polymer Research, 32(3), 1-12.
  • Mohan, M. R., Kumaravel, A., & Rajkumar, M. (2023). Fabrication and characterization of hybrid composites incorporating multi-walled carbon nanotubes and natural fibers: Mechanical and moisture resistance enhancement. Journal of Materials Research and Technology, 23, pp. 4265–4278.
  • Kopač, T. and Ručigaj, A. (2024). Impact of fiber diameter and surface substituents on the mechanical and flow properties of sonicated cellulose dispersions. International journal of biological macromolecules, 281, p.136210.
  • Somvanshi, K.S. and Gope, P.C. (2021). Effect of ultrasonication and fiber treatment on mechanical and thermal properties of polyvinyl alcohol/cellulose fiber nano‐biocomposite film. Polymer Composites, 42(10), pp.5310-5322.
  • Abisha, M., Priya, R.K., Arunachalam, K.P., Avudaiappan, S., Saavedra Flores, E.I. and Parra, P.F. (2023). Biodegradable green composites: effects of potassium permanganate (KMnO4) treatment on thermal, mechanical, and morphological behavior of butea parviflora (BP) fibers. Polymers, 15(9), p.2197.
  • Karthikeyan, R. and Madhu, S. (2025). Impact of brown algae particles on the mechanical properties of jute-reinforced polymeric composites for sustainable development. Results in Engineering, 25, p.104548.
  • Ahmad, J. and Zhou, Z. (2022). Mechanical properties of natural as well as synthetic fiber reinforced concrete: a review. Construction and Building Materials, 333, p.127353.
  • Rangappa, S.M., Rajak, D.K. and Siengchin, S. eds. (2021). Natural and synthetic fiber reinforced composites: synthesis, properties and applications. John Wiley & Sons.
  • Ao, X., Crouse, R., González, C. and Wang, D.Y. (2024). Impact of nanohybrid on the performance of non-reinforced biocomposites and glass-fiber reinforced biocomposites: Synthesis, mechanical properties, and fire behavior. Construction and Building Materials, 436, p.136922.
  • Siddiqui, V.U., Sapuan, S.M., Isah, A., Yusuf, J. and Khan, A. (2024). Advancements in multiscale oil palm fiber composites: Manufacturing techniques, performance evaluation, and industrial applications. Industrial Crops and Products, 213, p.118399.
  • Sahoo, G., Kamalakannan, R., Pradeep, G.M., Manivelmuralidaran, V. and Girimurugan, R. (2022). A process of analyzing the performance evaluation of sisal fiber in fiber reinforced composites. Materials Today: Proceedings, 56, pp.3201-3206.
  • Khalid, M.Y., Al Rashid, A., Arif, Z.U., Sheikh, M.F., Arshad, H. and Nasir, M.A. (2021). Tensile strength evaluation of glass/jute fibers reinforced composites: An experimental and numerical approach. Results in engineering, 10, p.100232.
  • Ray, S., Haque, M., Ahmed, T. and Nahin, T.T. (2023). Comparison of artificial neural network (ANN) and response surface methodology (RSM) in predicting the compressive and splitting tensile strength of concrete prepared with glass waste and tin (Sn) can fiber. Journal of king saud university-engineering sciences, 35(3), pp.185-199.
  • Gani, A., Ibrahim, M., Ulmi, F. and Farhan, A. (2024). The influence of different fiber sizes on the flexural strength of natural fiber-reinforced polymer composites. Results in Materials, 21, p.100534.
  • Zheng, D., Wu, R., Sufian, M., Kahla, N.B., Atig, M., Deifalla, A.F., Accouche, O. and Azab, M. (2022). Flexural strength prediction of steel fiber-reinforced concrete using artificial intelligence. Materials, 15(15), p.5194.
  • Natrayan, L., Surakasi, R., Patil, P.P., Kaliappan, S., Selvam, V. and Murugan, P. (2023). Optimizing Numerous Influencing Parameters of Nano‐SiO2/Banana Fiber‐Reinforced Hybrid Composites using Taguchi and ANN Approach. Journal of Nanomaterials, 2023(1), p.3317584.
  • Lee, S.W., Han, S., Kim, S.I. and Choi, S. (2023). Influence of elevated temperature on the microhardness and microstructure of carbon fiber reinforced polymers. Journal of Reinforced Plastics and Composites, 42(23-24), pp.1220-1228.
  • Zhang, N., Yan, C., Li, L. and Khan, M. (2022). Assessment of fiber factor for the fracture toughness of polyethylene fiber reinforced geopolymer. Construction and Building Materials, 319, p.126130.
  • Jin, P., Wang, J., Liu, X., Li, Y., Liu, Z., Zhang, Z., Liang, H., Wang, X. and Chen, X. (2025). Fracture toughness of CFREP composite under different three-dimensional orientations. Engineering Fracture Mechanics, p.111418.
  • Jamshaid, H., Mishra, R.K., Raza, A., Hussain, U., Rahman, M.L., Nazari, S., Chandan, V., Muller, M. and Choteborsky, R. (2022). Natural cellulosic fiber reinforced concrete: influence of fiber type and loading percentage on mechanical and water absorption performance. Materials, 15(3), p.874.
  • Lakshmaiya, N., Raja, T. and Yuvarajan, D. (2025). Sustainable High-Strength Composites: Hybrid Bamboo and Cellulose Reinforced Polyester for Automotive Engineering. Journal of Bio-and Tribo-Corrosion, 11(3), p.85.
  • Kumar, S., Prasad, L., Bijlwan, P.P. and Yadav, A. (2024). Thermogravimetric analysis of lignocellulosic leaf-based fiber-reinforced thermosets polymer composites: an overview. Biomass Conversion and Biorefinery, 14(12), pp.12673-12698.
  • Laifa, F., Rokbi, M., Amroune, S., Zaoui, M. and Seki, Y. (2022). Investigation of mechanical, physicochemical, and thermal properties of new fiber from Silybum marianum bark fiber. Journal of Composite Materials, 56(14), pp.2227-2238.
There are 38 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Research Article
Authors

Solairaju Jothi Arunachalam 0009-0003-2749-3546

Niyas Ahamed A 0009-0004-7271-1781

Submission Date October 8, 2025
Acceptance Date November 3, 2025
Early Pub Date November 4, 2025
Publication Date December 16, 2025
Published in Issue Year 2026 Volume: 10 Issue: 1

Cite

APA Jothi Arunachalam, S., & A, N. A. (2025). Impact of Hybrid Nanoparticle Inclusion and Fiber Layer Arrangement on the Jute/Kenaf/Glass Fiber Composite Laminates. Turkish Journal of Engineering, 10(1), 103-115. https://doi.org/10.31127/tuje.1799682
AMA Jothi Arunachalam S, A NA. Impact of Hybrid Nanoparticle Inclusion and Fiber Layer Arrangement on the Jute/Kenaf/Glass Fiber Composite Laminates. TUJE. December 2025;10(1):103-115. doi:10.31127/tuje.1799682
Chicago Jothi Arunachalam, Solairaju, and Niyas Ahamed A. “Impact of Hybrid Nanoparticle Inclusion and Fiber Layer Arrangement on the Jute Kenaf Glass Fiber Composite Laminates”. Turkish Journal of Engineering 10, no. 1 (December 2025): 103-15. https://doi.org/10.31127/tuje.1799682.
EndNote Jothi Arunachalam S, A NA (December 1, 2025) Impact of Hybrid Nanoparticle Inclusion and Fiber Layer Arrangement on the Jute/Kenaf/Glass Fiber Composite Laminates. Turkish Journal of Engineering 10 1 103–115.
IEEE S. Jothi Arunachalam and N. A. A, “Impact of Hybrid Nanoparticle Inclusion and Fiber Layer Arrangement on the Jute/Kenaf/Glass Fiber Composite Laminates”, TUJE, vol. 10, no. 1, pp. 103–115, 2025, doi: 10.31127/tuje.1799682.
ISNAD Jothi Arunachalam, Solairaju - A, Niyas Ahamed. “Impact of Hybrid Nanoparticle Inclusion and Fiber Layer Arrangement on the Jute Kenaf Glass Fiber Composite Laminates”. Turkish Journal of Engineering 10/1 (December2025), 103-115. https://doi.org/10.31127/tuje.1799682.
JAMA Jothi Arunachalam S, A NA. Impact of Hybrid Nanoparticle Inclusion and Fiber Layer Arrangement on the Jute/Kenaf/Glass Fiber Composite Laminates. TUJE. 2025;10:103–115.
MLA Jothi Arunachalam, Solairaju and Niyas Ahamed A. “Impact of Hybrid Nanoparticle Inclusion and Fiber Layer Arrangement on the Jute Kenaf Glass Fiber Composite Laminates”. Turkish Journal of Engineering, vol. 10, no. 1, 2025, pp. 103-15, doi:10.31127/tuje.1799682.
Vancouver Jothi Arunachalam S, A NA. Impact of Hybrid Nanoparticle Inclusion and Fiber Layer Arrangement on the Jute/Kenaf/Glass Fiber Composite Laminates. TUJE. 2025;10(1):103-15.
Flag Counter