Research Article
BibTex RIS Cite

INVESTIGATION OF OXYGEN-RELATED DEFECTS IN ZnO: GROWING TIME AND Mn CONCENTRATION EFFECTS

Year 2019, , 68 - 75, 01.04.2019
https://doi.org/10.31127/tuje.453593

Abstract

The optical and photoluminescence
properties of ZnO nanocrystals synthesized via hydrothermal method are
determined in this study. The effect of growing time (
1 h, 6 h, 12 h,
24 h and 36 h
) and Mn concentration (5x10-4
mol, 10x10-4, 25x10-4 mol, 75x10-4 mol, 100x10-4
mol, 250x0-4 mol) on these properties are investigated and presented
in detail. Optical properties of the nanocrystals are investigated by using
UV-VIS spectrophotometer. The ultraviolet–visible (UV-Vis) and
photoluminescence (PL) spectroscopy techniques are used for optical and
photoluminescence properties characterization.
Room temperature PL
spectra of the ZnO nanopowders show a near band-edge emission (peak at 385 nm)
and a red light emission (peak at 650 nm) for both ZnO synthesized for different
growing time and different Mn concentration.
The ZnO prepared with 1 h and 12 h includes the lowest oxygen related
defects. The ZnO doped with
5x10-4
mol shows the highest oxygen related defects whereas that of 100x10-4
mol shows the lowest defects.

References

  • Achouri, F., Corbel, S., Balan, L., Mozet, K., Girot, E., Medjahdi, G., Ben, M., Ghrabi, A. and Schneider, R. (2016). “Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis.” JMADE, Vol. 101, pp. 309–316.
  • Ahmed, S. A. (2017). “Structural, optical, and magnetic properties of Mn-doped ZnO samples.” Results Phys., Vol. 7, pp. 604–610.
  • Altintas Yildirim, O., Arslan, H. and Sönmezoğlu, S. (2016). “Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts.” Appl. Surf. Sci., Vol. 390, pp. 111–121.
  • Alvi, N. H., Hasan, K., Nur, O. and Willander, M. (2011). “The origin of the red emission in n-ZnO nanotubes / p-GaN white light emitting diodes.” Nanoscale Research Lett., Vol. pp. 1–7.
  • Anandan, S., Vinu, A., Mori, T., Gokulakrishnan, N., Srinivasu, P., Murugesan, V. and Ariga, K. (2007). “Photocatalytic degradation of 2,4,6-trichlorophenol using lanthanum doped ZnO in aqueous suspension.” Catal. Commun., Vol. 8, pp. 1377–1382.
  • Awad, M. A., Ahmed, A. M., Khavrus, V. O. and Ibrahim, E. M. M. (2015). “Tuning the morphology of ZnO nanostructure by in doping and the associated variation in electrical and optical properties.” Ceram. Int., Vol. 41, No. 8, pp. 10116–10124.
  • Bahnemann, D. W., Kormann, C. and Hoffmann, M. R. (1987). “Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study.” J. Phys. Chem., Vol. 91, No. 14, pp. 3789-3798.
  • Barzgari, Z., Ghazizadeh, A. and Zahra, S. (2016). “Preparation of Mn-doped ZnO nanostructured for photocatalytic degradation of Orange G under solar light.” Res. Chem. Intermed., Vol. 42, No. 5, pp. 4303–4315.
  • Bhatia, S., Verma, N. and Bedi, R. K. (2017). “Sn-doped ZnO nanopetal networks for efficient photocatalytic degradation of dye and gas sensing applications” Appl. Surf. Sci., Vol. 407, pp. 495–502.
  • Chang, Y. Q., Wang, P. W., Ni, S. L., Long, Y. and Li, X. D. (2012). “Influence of Co Content on Raman and Photoluminescence Spectra of Co Doped ZnO Nanowires.” J. Mater. Sci. Technol., Vol. 28, No. 4, pp. 313–316.
  • Chauhan, R., Kumar, A. and Chaudhary, R. P. (2012). “Structural and photocatalytic studies of Mn doped TiO2 nanoparticles.” Spectrochim. Acta – Part A Mol. Biomol. Spectrosc., Vol. 98, pp. 256–264.
  • Choudhury, S., Sain, S., Mandal, M. K., Pradhan, S. K. and Meikap, A. K. (2016). “Investigation of dielectric and electrical behavior of nanocrystalline Zn1−xMnxO (x = 0 to 0.10) semiconductors synthesized by mechanical alloying.” Physica E, Vol. 81, pp. 122 130.
  • Cohn, A.W., Kittilstved, K. R. and Gamelin, D. R. (2012). “Tuning the Potentials of “Extra” Electrons in Colloidal n-Type ZnO Nanocrystals via Mg2+ Substitution.” J. Am. Chem. Soc., Vol. 134, No. 18, pp. 7937-7943.
  • Das, S. N. Moon, K. J., Kar, J. P., Choi, J. H., Xiong, J., Lee, T. and Myoung, J. M. (2010). “ZnO single nanowire-based UV detectors.” Appl. Phys. Lett., Vol. 97, pp. 022103.
  • Deka, S. and Joy, P. A. (2007). “Synthesis and magnetic properties of Mn doped ZnO nanowires.” Solid State Commun., Vol. 142, No. 4, pp. 190–194.
  • Dhara, A., Sain, S., Das, S. and Pradhand, S. K. (2018). “Microstructure, optical, dielectric and electrical characterizations of Mn doped ZnO nanocrystals synthesized by mechanical alloying.” Ceramics International, Vol. 44, pp. 7110-7121.
  • Djurisic, A. B., Leung, Y. H., Tam, K. H., Ding, L., Ge, W. K., Chen, H. Y. and Gwo, S. (2006). "Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength." Applied Physics Letters, Vol. 88, No. 10, pp. 28–31.
  • Donkova, B., Dimitrov, D., Kostadinov, M., Mitkova, E. and Mehandjiev, D. (2010). “Catalytic and photocatalytic activity of lightly doped catalysts M:ZnO (M = Cu, Mn).” Mater. Chem. Phys., Vol. 123, pp. 563–568.
  • El Hichou, A., Addou, M., Ebothé, J., Troyon, M. (2005). “Influence of deposition temperature (Ts), air flow rate (f) and precursors on cathodoluminescence properties of ZnO thin films prepared by spray pyrolysis.” J Lumines, Vol. 113, pp. 183–190.
  • Emanetoglu, N. W., Gorla, C., Liu, Y., Liang, S. and Lu, Y. (1999). “Epitaxial ZnO piezoelectric thin films for saw filters.” Mater. Sci. Semicond. Process., Vol. 2, No. 3, pp. 247–252.
  • Erhart, P., Albe, K. and Klein, A. (2006). “First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects.” Physical Review B - Condensed Matter and Materials Physics, Vol. 73, No. 20, pp. 1–9.
  • Fabbiyola, S., Sailaja, V., Kennedy, J., Bououdina, L., Judith, M. and Vijaya, J., (2017). “Optical and magnetic properties of Ni-doped ZnO nanoparticles.” Journal of Alloys and Compounds, Vol. 694, pp. 522-531.
  • Fan, Z., Wang, D., Chang, P., Tseng, W. and Lu, J. G. (2004). “ZnO nanowire field-effect transistor and oxygen sensing property.” Appl. Phys. Lett., Vol. 84, pp. 5923.
  • Gong, Y., Andelman, T., Neumark, G. F., O’Brien, S. and Kuskovsky, I. L. (2007). “Origin of defect-related green emission from ZnO nanoparticles: effect of surface modification.” Nanoscale Res. Lett., Vol. 2, pp. 297–302.
  • Glushenkov, A. M., Zhang, H. Z., Zou, J., Lu, G. Q. and Chen, Y. (2007). “Efficient production of ZnO nanowires by a ball milling and annealing method,” Nanotechnology, Vol. 18 No. 17, pp. 175604 (6pp).
  • Janotti, A. and Van De Walle, C. G. (2005). “Oxygen vacancies in ZnO.” Applied Physics Letters, Vol. 87, No. 12, pp. 1–3.
  • Kaftelen, H., Ocakoglu, K., Thomann, R., Tu, S., Weber, S. and Erdem, E. (2012). “EPR and photoluminescence spectroscopy studies on the defect structure of ZnO nanocrystals.” Phys. Rev. B, Vol. 86, No. 1, pp. 1–9.
  • Kadam, A. N., Kim, T. G., Shin, D. S., Garadkar, K. M. and Park, J. (2017). “Morphological evolution of Cu doped ZnO for enhancement of photocatalytic activity.” J. Alloys Compd., Vol. 710, pp. 102–113.
  • Karmakar, R., Neogi, S. K., Banerjee, A. and Bandyopadhyay, S. (2012). “Structural; morphological; optical and magnetic properties of Mn doped ferromagnetic ZnO thin film.” Appl. Surf. Sci., Vol. 263, pp. 671–677.
  • Khanna, S. N., Rao, B. K., Jena, P. and Knickelbein, M. (2003). “Ferrimagnetism in Mn 7 cluster.” Chem. Phys. Lett., Vol. 378, No. 3, pp. 374–379.
  • Keis, K., Baue, C., Boschloo, G., Hagfeldt, A., Westermark, K., Rensmo, H. and Siegbahn, H. (2002). “Nanostructured ZnO electrodes for dye-sensitized solar cell applications.” J. Photochem. Photobiol. A: Chem., Vol. 148, pp. 57–64.
  • Koch, M. H., Timbrell, P. Y. and Lamb, R. N. (1995). “The influence of film crystallinity on the coupling efficiency of ZnO optical modulator waveguides.” Semicond. Sci. Technol., Vol. 10, pp. 1523–1527.
  • Law, M., Greene, L. E., Johnson, J. C., Saykally, R. and Yang, P. D. (2005). “Nanowire dye-sensitized solar cells.” Nat. Mater., Vol. 4, No. 6, pp. 455–459.
  • Li, W. J., Shi, E. W., Zheng, Y. Q. and Yin, Z. W. (2001). “Hydrothermal preparation of nanometer ZnO nanopowders.” J. Mater. Sci. Lett., Vol. 20, pp. 1381-1383.
  • Ma, Q., Lv, X., Wang, Y. and Chen, J. (2016). “Optical and photocatalytic properties of Mn doped flower-like ZnO hierarchical structures.” Opt. Mater., Vol. 60, pp. 86–93.
  • Martinson, A. B. F., Elam, J. W., Hupp, J. T. and Pellin, M. J. (2007). “ZnO Nanotube Based Dye-Sensitized Solar Cells.” Nano Lett., Vol. 7, No. 8, pp. 2183–2187.
  • Mei, Y. F., Siu, G. G., Fu, R. K. Y., Wong, K. W., Chu, P. K., Lai, C. W. and Ong, H. C. (2005). “Determination of nitrogen-related defects in N-implanted ZnO films by dynamic cathodoluminescence.” Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, Vol. 237, pp. 307–311.
  • Moontragoon, P., Pinitsoontorn, S. and Thongbai, P. (2013). “Mn-doped ZnO nanoparticles: Preparation, characterization, and calculation of electronic and magnetic properties.” Microelectron. Eng., Vol. 108, No. 3, pp. 158–162.
  • Motaung, D. E., Kortidis, I., Papadaki, D., Nkosi, S. S., Mhlongo, G. H., Wesley-Smith, J., Malgas, G. F., Mwakikunga, B. W., Coetsee, E., Swart, H. C., Kiriakidis, G. and Ray, S. S. (2014). “Defect-induced magnetism in un-doped and Mn-doped wide band gap Zinc oxide grown by aerosol spray pyrolysis.” Appl. Surf. Sci., Vol. 311, pp. 14-26.
  • Nasser, R., Othmen, W. B. H., Elhouichet, H. and Férid, M. (2017). “Preparation, characterization of Sb-doped ZnO nanocrystals and their excellent solar light driven photocatalytic activity.” Appl. Surf. Sci., Vol. 393, pp. 486–495.
  • Othman, A. A., Osman, M. A., Ibrahim, E. M. M., Ali, M. A. and Abd-Elrahim, A. G. (2017). “Mn-doped ZnO nanocrystals synthesized by sonochemical method: Structural, photoluminescence, and magnetic properties.” Materials Science and Engineering: B, Vol. 219, pp. 1-9.
  • Putri, N. A., Fauzia, V., Iwan, S., Roza, L., Umar, A. A. and Budi, S. (2018). “Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates.” Applied Surface Science, Vol. 439, pp. 285–297.
  • Radoi, R., Fern ndez, P., Piqueras, J., Wiggins, M. S. and Solis, J. (2003). “Luminescence properties of mechanically milled and laser irradiated ZnO.” Nanotechnology, Vol. 14, pp. 794–798.
  • Saito, N., Haneda, H., Sekiguchi, T., Ohashi, N., Sakaguchi, I. and Koumoto, K. (2002). “Low‐Temperature Fabrication of Light‐Emitting Zinc Oxide Micropatterns Using Self‐Assembled Monolayers.” Adv. Mater., Vol. 14, No. 6, pp. 418-421.
  • Saleh, R. and Djaja, N. F. (2014). “Transition metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light.” Spectrochim. Acta – Part A Mol. Biomol. Spectrosc., Vol. 130, pp. 581–590.
  • Samanta, A., Goswami, M. N. and Mahapatra, P. K. (2018). “Magnetic and electric properties of Ni-doped ZnO nanoparticles exhibit diluted magnetic semiconductor in nature.” Journal of Alloys and Compounds, Vol. 730, No. 399–407.
  • Schneider, J. J., Hoffmann, R. C., Engstler, J., Klyszcz, A., Erdem, E., Jakes, P., Eichel, R. A., Pitta-Bauermann, L. and Bill, J. (2010). “Synthesis, characterization, defect chemistry, and FET properties of microwave-derived nanoscaled zinc oxide.” Chem. Mater., Vol. 22, No. 2203-2212.
  • Sekine, N., Chou, C. H., Kwan, W. L. and Yang, Y. (2009). “ZnO nano-ridge structure and its application in inverted polymer solar cell.” Org. Electron, Vol. 10, No. 8, pp. 1473–1477.
  • Studenikin, S. A., Golego, N. and Cocivera, M. (1998). “Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis.” Journal of Applied Physics, Vol. 84, No. 4, pp. 2287–2294.
  • Tabib, A., Bouslama, W., Sieber, B., Addad, A., Elhouichet, H., Férid, M. and Boukherroub, R. (2017). “Structural and optical properties of Na doped ZnO nanocrystals: application to solar photocatalysis.” Appl. Surf. Sci., Vol. 396, pp. 1528–1538.
  • Toloman, D., Mesaros, A., Popa, A., Raita, O., Silipas, T. D., Vasile, B. S., Pana, O. and Giurgiu, L. M. (2013). “Evidence by EPR of ferromagnetic phase in Mn-doped ZnO nanoparticles annealed at different temperatures.” Journal of Alloys and Compounds, Vol. 551, pp. 502-507.
  • Ullah, R. and Dutta, J. (2008). “Photocatalytic degradation of organic dyes with manganese doped ZnO nanoparticles.” J. Hazard. Mater., Vol. 156, pp. 194–200.
  • Umar, K., Aris, A., Parveen, T., Jaafar, J., Abdul Majid, Z., Vijaya Bhaskar Reddy, A. and Talib, J. (2015). “Synthesis, characterization of Mo and Mn doped ZnO and their photocatalytic activity for the decolorization of two different chromophoric dyes.” Appl. Catal. A Gen., Vol. 505, pp. 507–514.
  • Vijayalakshmi, K. and Sivaraj, D. (2015). “Enhanced antibacterial activity of Cr doped ZnO nanorods synthesized using microwave processing.” RSC Adv., Vol. 5, pp. 68461–68469.
  • Vlasenko, L. S. and Watkins, G. D. (2005). “Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K.” Physical Review B - Condensed Matter and Materials Physics, Vol. 72, No. 3, pp. 1–12.
  • Wang, J., Yang, J., Han, N., Zhou, X., Gong, S., Yang, J., Hu, P. and Chen, Y. (2017). “Highly sensitive and selective ethanol and acetone gas sensors based on modified ZnO nanomaterials.” Materials and Design, Vol. 121, pp. 69–76.
  • Wang, J., Yang, P. and Wei, X. (2015). “High-Performance, Room-Temperature, and No-Humidity-Impact Ammonia Sensor Based on Heterogeneous Nickel Oxide and Zinc Oxide Nanocrystals.” ACS Appl. Mater. Interfaces, Vol. 7, No. 6, pp. 3816–3824.
  • Wang, N., Yang, Y. and Yang, G. (2011). “Great blue-shift of luminescence of ZnO nanoparticle array constructed from ZnO quantum dots.” Nanoscale Res. Lett., Vol. 338, pp. 6.
  • Wei, S., Lian, J. and Wu, H. (2010). “Annealing effect on the photoluminescence properties of ZnO nanorod array prepared by a PLD-assistant wet chemical method.” Mater. Charact., Vol. 61, No. 11, pp. 1239–1244.
  • Wu, L., Wu, Y., Pan, X. and Kong, F. (2006). “Synthesis of ZnO nanorod and the annealing effect on its photoluminescence property.” Opt Mater., Vol. 28, pp. 418–422.
  • Yang, J., Li, X., Lang, J., Yang, L., Gao, M., Liu, X., Wei, M., Liu, Y. and Wang, R. (2011). “Effects of mineralizing agent on the morphologies and photoluminescence properties of Eu3+-doped ZnO nanomaterials.” J. Alloys Compd., Vol. 509, No. 41, pp. 10025–10031.
  • Yildirimcan, S., Ocakoglu, K., Erat, S., Emen, F. M., Repp, S. and Erdem, E. (2016). "The effect of growing time and Mn concentration on the defect structure of ZnO nanocrystals: X-ray diffraction, infrared and EPR spectroscopy." RSC Adv., Vol. 6, No. 45, pp. 39511–39521.
Year 2019, , 68 - 75, 01.04.2019
https://doi.org/10.31127/tuje.453593

Abstract

References

  • Achouri, F., Corbel, S., Balan, L., Mozet, K., Girot, E., Medjahdi, G., Ben, M., Ghrabi, A. and Schneider, R. (2016). “Porous Mn-doped ZnO nanoparticles for enhanced solar and visible light photocatalysis.” JMADE, Vol. 101, pp. 309–316.
  • Ahmed, S. A. (2017). “Structural, optical, and magnetic properties of Mn-doped ZnO samples.” Results Phys., Vol. 7, pp. 604–610.
  • Altintas Yildirim, O., Arslan, H. and Sönmezoğlu, S. (2016). “Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts.” Appl. Surf. Sci., Vol. 390, pp. 111–121.
  • Alvi, N. H., Hasan, K., Nur, O. and Willander, M. (2011). “The origin of the red emission in n-ZnO nanotubes / p-GaN white light emitting diodes.” Nanoscale Research Lett., Vol. pp. 1–7.
  • Anandan, S., Vinu, A., Mori, T., Gokulakrishnan, N., Srinivasu, P., Murugesan, V. and Ariga, K. (2007). “Photocatalytic degradation of 2,4,6-trichlorophenol using lanthanum doped ZnO in aqueous suspension.” Catal. Commun., Vol. 8, pp. 1377–1382.
  • Awad, M. A., Ahmed, A. M., Khavrus, V. O. and Ibrahim, E. M. M. (2015). “Tuning the morphology of ZnO nanostructure by in doping and the associated variation in electrical and optical properties.” Ceram. Int., Vol. 41, No. 8, pp. 10116–10124.
  • Bahnemann, D. W., Kormann, C. and Hoffmann, M. R. (1987). “Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study.” J. Phys. Chem., Vol. 91, No. 14, pp. 3789-3798.
  • Barzgari, Z., Ghazizadeh, A. and Zahra, S. (2016). “Preparation of Mn-doped ZnO nanostructured for photocatalytic degradation of Orange G under solar light.” Res. Chem. Intermed., Vol. 42, No. 5, pp. 4303–4315.
  • Bhatia, S., Verma, N. and Bedi, R. K. (2017). “Sn-doped ZnO nanopetal networks for efficient photocatalytic degradation of dye and gas sensing applications” Appl. Surf. Sci., Vol. 407, pp. 495–502.
  • Chang, Y. Q., Wang, P. W., Ni, S. L., Long, Y. and Li, X. D. (2012). “Influence of Co Content on Raman and Photoluminescence Spectra of Co Doped ZnO Nanowires.” J. Mater. Sci. Technol., Vol. 28, No. 4, pp. 313–316.
  • Chauhan, R., Kumar, A. and Chaudhary, R. P. (2012). “Structural and photocatalytic studies of Mn doped TiO2 nanoparticles.” Spectrochim. Acta – Part A Mol. Biomol. Spectrosc., Vol. 98, pp. 256–264.
  • Choudhury, S., Sain, S., Mandal, M. K., Pradhan, S. K. and Meikap, A. K. (2016). “Investigation of dielectric and electrical behavior of nanocrystalline Zn1−xMnxO (x = 0 to 0.10) semiconductors synthesized by mechanical alloying.” Physica E, Vol. 81, pp. 122 130.
  • Cohn, A.W., Kittilstved, K. R. and Gamelin, D. R. (2012). “Tuning the Potentials of “Extra” Electrons in Colloidal n-Type ZnO Nanocrystals via Mg2+ Substitution.” J. Am. Chem. Soc., Vol. 134, No. 18, pp. 7937-7943.
  • Das, S. N. Moon, K. J., Kar, J. P., Choi, J. H., Xiong, J., Lee, T. and Myoung, J. M. (2010). “ZnO single nanowire-based UV detectors.” Appl. Phys. Lett., Vol. 97, pp. 022103.
  • Deka, S. and Joy, P. A. (2007). “Synthesis and magnetic properties of Mn doped ZnO nanowires.” Solid State Commun., Vol. 142, No. 4, pp. 190–194.
  • Dhara, A., Sain, S., Das, S. and Pradhand, S. K. (2018). “Microstructure, optical, dielectric and electrical characterizations of Mn doped ZnO nanocrystals synthesized by mechanical alloying.” Ceramics International, Vol. 44, pp. 7110-7121.
  • Djurisic, A. B., Leung, Y. H., Tam, K. H., Ding, L., Ge, W. K., Chen, H. Y. and Gwo, S. (2006). "Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength." Applied Physics Letters, Vol. 88, No. 10, pp. 28–31.
  • Donkova, B., Dimitrov, D., Kostadinov, M., Mitkova, E. and Mehandjiev, D. (2010). “Catalytic and photocatalytic activity of lightly doped catalysts M:ZnO (M = Cu, Mn).” Mater. Chem. Phys., Vol. 123, pp. 563–568.
  • El Hichou, A., Addou, M., Ebothé, J., Troyon, M. (2005). “Influence of deposition temperature (Ts), air flow rate (f) and precursors on cathodoluminescence properties of ZnO thin films prepared by spray pyrolysis.” J Lumines, Vol. 113, pp. 183–190.
  • Emanetoglu, N. W., Gorla, C., Liu, Y., Liang, S. and Lu, Y. (1999). “Epitaxial ZnO piezoelectric thin films for saw filters.” Mater. Sci. Semicond. Process., Vol. 2, No. 3, pp. 247–252.
  • Erhart, P., Albe, K. and Klein, A. (2006). “First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects.” Physical Review B - Condensed Matter and Materials Physics, Vol. 73, No. 20, pp. 1–9.
  • Fabbiyola, S., Sailaja, V., Kennedy, J., Bououdina, L., Judith, M. and Vijaya, J., (2017). “Optical and magnetic properties of Ni-doped ZnO nanoparticles.” Journal of Alloys and Compounds, Vol. 694, pp. 522-531.
  • Fan, Z., Wang, D., Chang, P., Tseng, W. and Lu, J. G. (2004). “ZnO nanowire field-effect transistor and oxygen sensing property.” Appl. Phys. Lett., Vol. 84, pp. 5923.
  • Gong, Y., Andelman, T., Neumark, G. F., O’Brien, S. and Kuskovsky, I. L. (2007). “Origin of defect-related green emission from ZnO nanoparticles: effect of surface modification.” Nanoscale Res. Lett., Vol. 2, pp. 297–302.
  • Glushenkov, A. M., Zhang, H. Z., Zou, J., Lu, G. Q. and Chen, Y. (2007). “Efficient production of ZnO nanowires by a ball milling and annealing method,” Nanotechnology, Vol. 18 No. 17, pp. 175604 (6pp).
  • Janotti, A. and Van De Walle, C. G. (2005). “Oxygen vacancies in ZnO.” Applied Physics Letters, Vol. 87, No. 12, pp. 1–3.
  • Kaftelen, H., Ocakoglu, K., Thomann, R., Tu, S., Weber, S. and Erdem, E. (2012). “EPR and photoluminescence spectroscopy studies on the defect structure of ZnO nanocrystals.” Phys. Rev. B, Vol. 86, No. 1, pp. 1–9.
  • Kadam, A. N., Kim, T. G., Shin, D. S., Garadkar, K. M. and Park, J. (2017). “Morphological evolution of Cu doped ZnO for enhancement of photocatalytic activity.” J. Alloys Compd., Vol. 710, pp. 102–113.
  • Karmakar, R., Neogi, S. K., Banerjee, A. and Bandyopadhyay, S. (2012). “Structural; morphological; optical and magnetic properties of Mn doped ferromagnetic ZnO thin film.” Appl. Surf. Sci., Vol. 263, pp. 671–677.
  • Khanna, S. N., Rao, B. K., Jena, P. and Knickelbein, M. (2003). “Ferrimagnetism in Mn 7 cluster.” Chem. Phys. Lett., Vol. 378, No. 3, pp. 374–379.
  • Keis, K., Baue, C., Boschloo, G., Hagfeldt, A., Westermark, K., Rensmo, H. and Siegbahn, H. (2002). “Nanostructured ZnO electrodes for dye-sensitized solar cell applications.” J. Photochem. Photobiol. A: Chem., Vol. 148, pp. 57–64.
  • Koch, M. H., Timbrell, P. Y. and Lamb, R. N. (1995). “The influence of film crystallinity on the coupling efficiency of ZnO optical modulator waveguides.” Semicond. Sci. Technol., Vol. 10, pp. 1523–1527.
  • Law, M., Greene, L. E., Johnson, J. C., Saykally, R. and Yang, P. D. (2005). “Nanowire dye-sensitized solar cells.” Nat. Mater., Vol. 4, No. 6, pp. 455–459.
  • Li, W. J., Shi, E. W., Zheng, Y. Q. and Yin, Z. W. (2001). “Hydrothermal preparation of nanometer ZnO nanopowders.” J. Mater. Sci. Lett., Vol. 20, pp. 1381-1383.
  • Ma, Q., Lv, X., Wang, Y. and Chen, J. (2016). “Optical and photocatalytic properties of Mn doped flower-like ZnO hierarchical structures.” Opt. Mater., Vol. 60, pp. 86–93.
  • Martinson, A. B. F., Elam, J. W., Hupp, J. T. and Pellin, M. J. (2007). “ZnO Nanotube Based Dye-Sensitized Solar Cells.” Nano Lett., Vol. 7, No. 8, pp. 2183–2187.
  • Mei, Y. F., Siu, G. G., Fu, R. K. Y., Wong, K. W., Chu, P. K., Lai, C. W. and Ong, H. C. (2005). “Determination of nitrogen-related defects in N-implanted ZnO films by dynamic cathodoluminescence.” Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, Vol. 237, pp. 307–311.
  • Moontragoon, P., Pinitsoontorn, S. and Thongbai, P. (2013). “Mn-doped ZnO nanoparticles: Preparation, characterization, and calculation of electronic and magnetic properties.” Microelectron. Eng., Vol. 108, No. 3, pp. 158–162.
  • Motaung, D. E., Kortidis, I., Papadaki, D., Nkosi, S. S., Mhlongo, G. H., Wesley-Smith, J., Malgas, G. F., Mwakikunga, B. W., Coetsee, E., Swart, H. C., Kiriakidis, G. and Ray, S. S. (2014). “Defect-induced magnetism in un-doped and Mn-doped wide band gap Zinc oxide grown by aerosol spray pyrolysis.” Appl. Surf. Sci., Vol. 311, pp. 14-26.
  • Nasser, R., Othmen, W. B. H., Elhouichet, H. and Férid, M. (2017). “Preparation, characterization of Sb-doped ZnO nanocrystals and their excellent solar light driven photocatalytic activity.” Appl. Surf. Sci., Vol. 393, pp. 486–495.
  • Othman, A. A., Osman, M. A., Ibrahim, E. M. M., Ali, M. A. and Abd-Elrahim, A. G. (2017). “Mn-doped ZnO nanocrystals synthesized by sonochemical method: Structural, photoluminescence, and magnetic properties.” Materials Science and Engineering: B, Vol. 219, pp. 1-9.
  • Putri, N. A., Fauzia, V., Iwan, S., Roza, L., Umar, A. A. and Budi, S. (2018). “Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates.” Applied Surface Science, Vol. 439, pp. 285–297.
  • Radoi, R., Fern ndez, P., Piqueras, J., Wiggins, M. S. and Solis, J. (2003). “Luminescence properties of mechanically milled and laser irradiated ZnO.” Nanotechnology, Vol. 14, pp. 794–798.
  • Saito, N., Haneda, H., Sekiguchi, T., Ohashi, N., Sakaguchi, I. and Koumoto, K. (2002). “Low‐Temperature Fabrication of Light‐Emitting Zinc Oxide Micropatterns Using Self‐Assembled Monolayers.” Adv. Mater., Vol. 14, No. 6, pp. 418-421.
  • Saleh, R. and Djaja, N. F. (2014). “Transition metal-doped ZnO nanoparticles: Synthesis, characterization and photocatalytic activity under UV light.” Spectrochim. Acta – Part A Mol. Biomol. Spectrosc., Vol. 130, pp. 581–590.
  • Samanta, A., Goswami, M. N. and Mahapatra, P. K. (2018). “Magnetic and electric properties of Ni-doped ZnO nanoparticles exhibit diluted magnetic semiconductor in nature.” Journal of Alloys and Compounds, Vol. 730, No. 399–407.
  • Schneider, J. J., Hoffmann, R. C., Engstler, J., Klyszcz, A., Erdem, E., Jakes, P., Eichel, R. A., Pitta-Bauermann, L. and Bill, J. (2010). “Synthesis, characterization, defect chemistry, and FET properties of microwave-derived nanoscaled zinc oxide.” Chem. Mater., Vol. 22, No. 2203-2212.
  • Sekine, N., Chou, C. H., Kwan, W. L. and Yang, Y. (2009). “ZnO nano-ridge structure and its application in inverted polymer solar cell.” Org. Electron, Vol. 10, No. 8, pp. 1473–1477.
  • Studenikin, S. A., Golego, N. and Cocivera, M. (1998). “Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis.” Journal of Applied Physics, Vol. 84, No. 4, pp. 2287–2294.
  • Tabib, A., Bouslama, W., Sieber, B., Addad, A., Elhouichet, H., Férid, M. and Boukherroub, R. (2017). “Structural and optical properties of Na doped ZnO nanocrystals: application to solar photocatalysis.” Appl. Surf. Sci., Vol. 396, pp. 1528–1538.
  • Toloman, D., Mesaros, A., Popa, A., Raita, O., Silipas, T. D., Vasile, B. S., Pana, O. and Giurgiu, L. M. (2013). “Evidence by EPR of ferromagnetic phase in Mn-doped ZnO nanoparticles annealed at different temperatures.” Journal of Alloys and Compounds, Vol. 551, pp. 502-507.
  • Ullah, R. and Dutta, J. (2008). “Photocatalytic degradation of organic dyes with manganese doped ZnO nanoparticles.” J. Hazard. Mater., Vol. 156, pp. 194–200.
  • Umar, K., Aris, A., Parveen, T., Jaafar, J., Abdul Majid, Z., Vijaya Bhaskar Reddy, A. and Talib, J. (2015). “Synthesis, characterization of Mo and Mn doped ZnO and their photocatalytic activity for the decolorization of two different chromophoric dyes.” Appl. Catal. A Gen., Vol. 505, pp. 507–514.
  • Vijayalakshmi, K. and Sivaraj, D. (2015). “Enhanced antibacterial activity of Cr doped ZnO nanorods synthesized using microwave processing.” RSC Adv., Vol. 5, pp. 68461–68469.
  • Vlasenko, L. S. and Watkins, G. D. (2005). “Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 K.” Physical Review B - Condensed Matter and Materials Physics, Vol. 72, No. 3, pp. 1–12.
  • Wang, J., Yang, J., Han, N., Zhou, X., Gong, S., Yang, J., Hu, P. and Chen, Y. (2017). “Highly sensitive and selective ethanol and acetone gas sensors based on modified ZnO nanomaterials.” Materials and Design, Vol. 121, pp. 69–76.
  • Wang, J., Yang, P. and Wei, X. (2015). “High-Performance, Room-Temperature, and No-Humidity-Impact Ammonia Sensor Based on Heterogeneous Nickel Oxide and Zinc Oxide Nanocrystals.” ACS Appl. Mater. Interfaces, Vol. 7, No. 6, pp. 3816–3824.
  • Wang, N., Yang, Y. and Yang, G. (2011). “Great blue-shift of luminescence of ZnO nanoparticle array constructed from ZnO quantum dots.” Nanoscale Res. Lett., Vol. 338, pp. 6.
  • Wei, S., Lian, J. and Wu, H. (2010). “Annealing effect on the photoluminescence properties of ZnO nanorod array prepared by a PLD-assistant wet chemical method.” Mater. Charact., Vol. 61, No. 11, pp. 1239–1244.
  • Wu, L., Wu, Y., Pan, X. and Kong, F. (2006). “Synthesis of ZnO nanorod and the annealing effect on its photoluminescence property.” Opt Mater., Vol. 28, pp. 418–422.
  • Yang, J., Li, X., Lang, J., Yang, L., Gao, M., Liu, X., Wei, M., Liu, Y. and Wang, R. (2011). “Effects of mineralizing agent on the morphologies and photoluminescence properties of Eu3+-doped ZnO nanomaterials.” J. Alloys Compd., Vol. 509, No. 41, pp. 10025–10031.
  • Yildirimcan, S., Ocakoglu, K., Erat, S., Emen, F. M., Repp, S. and Erdem, E. (2016). "The effect of growing time and Mn concentration on the defect structure of ZnO nanocrystals: X-ray diffraction, infrared and EPR spectroscopy." RSC Adv., Vol. 6, No. 45, pp. 39511–39521.
There are 62 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Selma Erat 0000-0001-7187-7668

Saadet Yildirimcan This is me 0000-0002-9044-6908

Publication Date April 1, 2019
Published in Issue Year 2019

Cite

APA Erat, S., & Yildirimcan, S. (2019). INVESTIGATION OF OXYGEN-RELATED DEFECTS IN ZnO: GROWING TIME AND Mn CONCENTRATION EFFECTS. Turkish Journal of Engineering, 3(2), 68-75. https://doi.org/10.31127/tuje.453593
AMA Erat S, Yildirimcan S. INVESTIGATION OF OXYGEN-RELATED DEFECTS IN ZnO: GROWING TIME AND Mn CONCENTRATION EFFECTS. TUJE. April 2019;3(2):68-75. doi:10.31127/tuje.453593
Chicago Erat, Selma, and Saadet Yildirimcan. “INVESTIGATION OF OXYGEN-RELATED DEFECTS IN ZnO: GROWING TIME AND Mn CONCENTRATION EFFECTS”. Turkish Journal of Engineering 3, no. 2 (April 2019): 68-75. https://doi.org/10.31127/tuje.453593.
EndNote Erat S, Yildirimcan S (April 1, 2019) INVESTIGATION OF OXYGEN-RELATED DEFECTS IN ZnO: GROWING TIME AND Mn CONCENTRATION EFFECTS. Turkish Journal of Engineering 3 2 68–75.
IEEE S. Erat and S. Yildirimcan, “INVESTIGATION OF OXYGEN-RELATED DEFECTS IN ZnO: GROWING TIME AND Mn CONCENTRATION EFFECTS”, TUJE, vol. 3, no. 2, pp. 68–75, 2019, doi: 10.31127/tuje.453593.
ISNAD Erat, Selma - Yildirimcan, Saadet. “INVESTIGATION OF OXYGEN-RELATED DEFECTS IN ZnO: GROWING TIME AND Mn CONCENTRATION EFFECTS”. Turkish Journal of Engineering 3/2 (April 2019), 68-75. https://doi.org/10.31127/tuje.453593.
JAMA Erat S, Yildirimcan S. INVESTIGATION OF OXYGEN-RELATED DEFECTS IN ZnO: GROWING TIME AND Mn CONCENTRATION EFFECTS. TUJE. 2019;3:68–75.
MLA Erat, Selma and Saadet Yildirimcan. “INVESTIGATION OF OXYGEN-RELATED DEFECTS IN ZnO: GROWING TIME AND Mn CONCENTRATION EFFECTS”. Turkish Journal of Engineering, vol. 3, no. 2, 2019, pp. 68-75, doi:10.31127/tuje.453593.
Vancouver Erat S, Yildirimcan S. INVESTIGATION OF OXYGEN-RELATED DEFECTS IN ZnO: GROWING TIME AND Mn CONCENTRATION EFFECTS. TUJE. 2019;3(2):68-75.
Flag Counter