Research Article
BibTex RIS Cite
Year 2019, Volume: 3 Issue: 4, 189 - 196, 01.10.2019
https://doi.org/10.31127/tuje.537871

Abstract

References

  • Akers, S. B. (1978). “Binary decision diagrams.” IEEE Transactions on computers, Vol. 1, No. 6, pp. 509-16.
  • Aly, M. M., Gao, M., Hills, G., Lee, C. S., Pitner, G., Shulaker, M.M., Wu, T.F., Asheghi, M., Bokor, J., Franchetti, F. and Goodson, K.E. (2015). “Energy-efficient abundant-data computing: The N3XT 1,000 x.” Computer, Vol. 48, No. 12, pp. 24-33.
  • Asahi, N., Akazawa, M. and Amemiya, Y. (1997). “Single-electron logic device based on the binary decision diagram.” IEEE Transactions on Electron Devices, Vol. 44, No. 7, pp. 1109-16.
  • Bachtold, A., Hadley, P., Nakanishi, T. and Dekker, C. (2001). “Logic circuits with carbon nanotube transistors.” Science, Vol. 294, No. 5545, pp. 1317-20.
  • Bogaerts, W., Baets, R., Dumon, P., Wiaux, V., Beckx, S., Taillaert, D., Luyssaert, B., Van Campenhout, J., Bienstman, P. and Van Thourhout, D. (2005) J. Lightwave Technol. Vol. 23, No. 1, pp. 401– 412.
  • Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Kumar Selvaraja, S., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D. and Baets, R. (2012). “Silicon microring resonators.” Laser & Photonics Reviews, Vol. 6, No. 1, pp. 47-73.
  • Bogaerts, W., Dumon, P., Van Thourhout, D., Taillaert, D., Jaenen, P., Wouters, J., Beckx, S., Wiaux, V. and Baets, R. G. (2006). “Compact wavelength-selective functions in silicon-on-insulator photonic wires.” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 12, No. 6, pp. 1394-401.
  • Bryant, R. E. (1986). “Graph-based algorithms for boolean function manipulation.” IEEE Transactions on computers, Vol. 100, No. 8, pp. 677-91.
  • Caulfield, H.J. and Dolev, S. (2010). “Why future supercomputing requires optics.” Nature Photonics, Vol. 4, No.5, pp. 261.
  • Chattopadhyay, T. (2013). “Optical logic gates using binary decision diagram with mirrors.” Optics & Laser Technology, Vol. 54, pp. 159-69.
  • Cheng, Z., Rios, C., Youngblood, N., Wright, C. D., Pernice, W. H. and Bhaskaran, H. (2018). “Device‐Level Photonic Memories and Logic Applications Using Phase‐Change Materials.” Advanced Materials, Vol. 30, No. 32, pp. 1802435.
  • Chhowalla, M., Jena, D. and Zhang, H. (2016). “Two-dimensional semiconductors for transistors.” Nat. Rev. Mater., Vol. 1, No. 11, pp. 16052.
  • Fedeli, J., Augendre, E., Hartmann, J., Vivien, L., Grosse, P., Mazzocchi, V., Bogaerts, W., Van Thourhout, D. and Schrank, F. (2010). “Photonics and electronics integration in the helios project.” Proc., Proceedings of the 7th IEEE International Conference on Group IV Photonics (GFP), Beijing, China, pp. 356–358.
  • Fushimi, A. and Tanabe, T. (2014). “All-optical logic gate operating with single wavelength.” Optics express, Vol. 22, No. 4, pp. 4466-79.
  • Gardelis, S., Smith, C. G., Barnes, C. H., Linfield, E. H. and Ritchie, D. A. (1999). “Spin-valve effects in a semiconductor field-effect transistor: A spintronic device.” Physical Review B., Vol. 60, No. 11, pp. 7764.
  • Green, W. M., Rooks, M. J., Sekaric, L. and Vlasov, Y. A. (2007). “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator.” Optics express, Vol. 15, No. 25, pp. 17106-17113.
  • Guarino, A., Poberaj, G., Rezzonico, D., Degl'Innocenti, R. and Gunter, P. (2007). “Electro–optically tunable microring resonators in lithium niobate.” Nature photonics, Vol. 1, No. 7, pp. 407.
  • Gunn, C. (2006). “CMOS photonics for high-speed interconnects.” IEEE micro, Vol. 26, No. 2, pp. 58-66.
  • Gunn, C. (2006). “Silicon Photonics: Poised to Invade Local Area Networks." Photonics Spectra, Vol. 40, No. 3, pp. 62-69.
  • Hammer, M., Hiremath, K. R. and Stoffer, R. (2004). “Analytical approaches to the description of optical microresonator devices.” Proc., AIP conference proceedings, AIP, Melville, NY, USA, Vol. 709, No. 1, pp. 48-71.
  • Hardesty L. MIT News. 2009., http://news.mit.edu/2009/optical-computing [Accessed 23 Oct 2018].
  • Heebner, J. E., Wong, V., Schweinsberg, A., Boyd, R. W. and Jackson, D. J. (2004). “Optical transmission characteristics of fiber ring resonators.” IEEE journal of quantum electronics, Vol. 40, No. 6, pp. 726-30.
  • Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C. and O'Brien, J. L. (2010). “Quantum computers.” Nature, Vol. 464, No. 7285, pp. 45.
  • Larger, L., Soriano, M. C., Brunner, D., Appeltant, L., Gutierrez, J. M., Pesquera, L., Mirasso, C. R. and Fischer, I. (2012). “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing.” Optics express, Vol. 20, No. 3, pp. 3241-9.
  • Lin, S., Ishikawa, Y. and Wada, K. (2012). “Demonstration of optical computing logics based on binary decision diagram.” Optics Express, Vol. 20, No. 2, pp. 1378-84.
  • Little, B. E., Chu, S. T., Haus, H. A., Foresi, J. and Laine, J. P. (1997). “Microring resonator channel dropping filters.” Journal of lightwave technology, Vol. 15, No. 6, pp. 998-1005.
  • Marcatili, E. A. (1969). “Bends in optical dielectric guides.” Bell System Technical Journal, Vol. 48, No. 7, pp. 2103-32.
  • Miller, D., (2010). “Device requirements for optical interconnects to CMOS silicon chips.” Proc., Integrated Photonics Research, Silicon and Nanophotonics, Monterey, California, USA, pp. PMB3.
  • Miller, D.A. (2010). “Are optical transistors the logical next step?” Nature Photonics, Vol. 4, No.1, pp. 3.
  • Notomi, M., Shinya, A., Mitsugi, S., Kira, G., Kuramochi, E. and Tanabe, T. (2005). “Optical bistable switching action of Si high-Q photonic-crystal nanocavities.” Optics Express, Vol. 13, No. 7, pp. 2678-87.
  • Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M. and Massar, S. (2012). “Optoelectronic reservoir computing.” Scientific reports, Vol. 2, pp. 287.
  • Pesin, D. and MacDonald, A. H. (2012). “Spintronics and pseudospintronics in graphene and topological insulators.” Nat. Mater., Vol. 11, No. 5, pp. 409.
  • Rios, C., Stegmaier, M., Cheng, Z., Youngblood, N., Wright, C. D., Pernice, W. H. and Bhaskaran, H. (2018). “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics.” Optical Materials Express, Vol. 8, No. 9, pp. 2455-70.
  • Rios, C., Stegmaier, M., Hosseini, P., Wang, D., Scherer, T., Wright, C. D., Bhaskaran, H. and Pernice, W. H. (2015). “Integrated all-photonic non-volatile multi-level memory.” Nature Photonics, Vol. 9, No. 11, pp. 725.
  • Shastri, B. J., Tait, A. N., Ferreira de Lima, T., Nahmias, M. A., Peng, H. T. and Prucnal, P. R. (2018). Principles of neuromorphic photonics. Unconventional Computing: A Volume in the Encyclopedia of Complexity and Systems Science, Second Edition, Springer Berlin, Heidelberg, Germany, pp. 83-118.
  • Sordan, R., Traversi, F. and Russo, V. (2009). “Logic gates with a single graphene transistor.” Applied Physics Letters, Vol. 94, No. 7, pp. 51.
  • Stegmaier, M., Rios, C., Bhaskaran, H., Wright, C. D. and Pernice, W. H. (2017). “Nonvolatile All‐Optical 1× 2 Switch for Chipscale Photonic Networks.” Advanced Optical Materials, Vol. 5, No. 1, pp. 1600346.
  • Tans S. J., Verschueren, A.R. and Dekker C. (1998). “Room-temperature transistor based on a single carbon nanotube.” Nature, Vol. 393, No. 6680, pp. 49.
  • Tazawa, H., Kuo, Y. H., Dunayevskiy, I., Luo, J., Jen, A. K., Fetterman, H. R. and Steier, W. H. (2006) “Ring resonator-based electrooptic polymer traveling-wave modulator.” Journal of lightwave technology, Vol. 24, No. 9, pp. 3514.
  • Woods, D. and Naughton, T. J. (2012). “Optical computing: Photonic neural networks.” Nature Physics, Vol. 8, No.4, pp. 257.
  • Wu, Z., Chen, Y., Xu, P., Shao, Z., Zhang, T., Zhang, Y., Liu, L., Yang,C., Zhou, L., Chen, H. and Yu, S. (2016). “Graphene-on-silicon nitride microring resonators with high modulation depth.” Proc., Asia Communications and Photonics Conference, Optical Society of America, Wuhan, China, pp. AF2A-10.
  • Yakar, O., Nie, Y. Wada, K., Agarwal, A., and Ercan, İ., (2019). “Energy Efficiency of Microring Resonator (MRR)-Based Binary Decision Diagram (BDD) Circuits.” Submitted
  • Yoshikawa, N., Matsuzaki, F., Nakajima, N. and Yoda, K. (2002). “Design and component test of a 1-bit RSFQ microprocessor.” Physica C: Superconductivity, Vol. 378, pp. 1454-60.

LOGIC THRESHOLD FOR MICRORING RESONATOR-BASED BDD CIRCUITS: PHYSICAL AND OPERATIONAL ANALYSES

Year 2019, Volume: 3 Issue: 4, 189 - 196, 01.10.2019
https://doi.org/10.31127/tuje.537871

Abstract

Moore’s Law has been the fuel of expansive innovation in computing. The chip industry kept the Moore’s law extant for almost four decades. However, the halt of the rapid progress of the silicon technology is incipient by reason of the physical limitations. Emerging computing proposals suggest several alternatives to current computing paradigms and technologybases. The photonic circuitry is one of the most promising candidates with its high operation speed, energy efficient passive components, low crosstalk and appropriateness for parallel computation. Among various approaches to photonic logic, microring resonator-based Binary-Decision Diagram (BDD) architectures have a special place due to their small circuit footprint. However, the physical limitations imposed on their logic implementation has not been studied in depth to enable design of efficient circuits. In this paper, we study the physical structure and operational details of a microring resonatorbased Half-Adder (HA) circuit and outline the conditions under which the performance and accuracy of information processing is compromised due to its physical characteristics. Our analyses significantly contribute to determining key physical features and operations concerning logic implementation of microring resonator based BDD HA, which informs the future design and operational optimization of the microring resonator-based BDD logic circuits. 

References

  • Akers, S. B. (1978). “Binary decision diagrams.” IEEE Transactions on computers, Vol. 1, No. 6, pp. 509-16.
  • Aly, M. M., Gao, M., Hills, G., Lee, C. S., Pitner, G., Shulaker, M.M., Wu, T.F., Asheghi, M., Bokor, J., Franchetti, F. and Goodson, K.E. (2015). “Energy-efficient abundant-data computing: The N3XT 1,000 x.” Computer, Vol. 48, No. 12, pp. 24-33.
  • Asahi, N., Akazawa, M. and Amemiya, Y. (1997). “Single-electron logic device based on the binary decision diagram.” IEEE Transactions on Electron Devices, Vol. 44, No. 7, pp. 1109-16.
  • Bachtold, A., Hadley, P., Nakanishi, T. and Dekker, C. (2001). “Logic circuits with carbon nanotube transistors.” Science, Vol. 294, No. 5545, pp. 1317-20.
  • Bogaerts, W., Baets, R., Dumon, P., Wiaux, V., Beckx, S., Taillaert, D., Luyssaert, B., Van Campenhout, J., Bienstman, P. and Van Thourhout, D. (2005) J. Lightwave Technol. Vol. 23, No. 1, pp. 401– 412.
  • Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., De Vos, K., Kumar Selvaraja, S., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D. and Baets, R. (2012). “Silicon microring resonators.” Laser & Photonics Reviews, Vol. 6, No. 1, pp. 47-73.
  • Bogaerts, W., Dumon, P., Van Thourhout, D., Taillaert, D., Jaenen, P., Wouters, J., Beckx, S., Wiaux, V. and Baets, R. G. (2006). “Compact wavelength-selective functions in silicon-on-insulator photonic wires.” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 12, No. 6, pp. 1394-401.
  • Bryant, R. E. (1986). “Graph-based algorithms for boolean function manipulation.” IEEE Transactions on computers, Vol. 100, No. 8, pp. 677-91.
  • Caulfield, H.J. and Dolev, S. (2010). “Why future supercomputing requires optics.” Nature Photonics, Vol. 4, No.5, pp. 261.
  • Chattopadhyay, T. (2013). “Optical logic gates using binary decision diagram with mirrors.” Optics & Laser Technology, Vol. 54, pp. 159-69.
  • Cheng, Z., Rios, C., Youngblood, N., Wright, C. D., Pernice, W. H. and Bhaskaran, H. (2018). “Device‐Level Photonic Memories and Logic Applications Using Phase‐Change Materials.” Advanced Materials, Vol. 30, No. 32, pp. 1802435.
  • Chhowalla, M., Jena, D. and Zhang, H. (2016). “Two-dimensional semiconductors for transistors.” Nat. Rev. Mater., Vol. 1, No. 11, pp. 16052.
  • Fedeli, J., Augendre, E., Hartmann, J., Vivien, L., Grosse, P., Mazzocchi, V., Bogaerts, W., Van Thourhout, D. and Schrank, F. (2010). “Photonics and electronics integration in the helios project.” Proc., Proceedings of the 7th IEEE International Conference on Group IV Photonics (GFP), Beijing, China, pp. 356–358.
  • Fushimi, A. and Tanabe, T. (2014). “All-optical logic gate operating with single wavelength.” Optics express, Vol. 22, No. 4, pp. 4466-79.
  • Gardelis, S., Smith, C. G., Barnes, C. H., Linfield, E. H. and Ritchie, D. A. (1999). “Spin-valve effects in a semiconductor field-effect transistor: A spintronic device.” Physical Review B., Vol. 60, No. 11, pp. 7764.
  • Green, W. M., Rooks, M. J., Sekaric, L. and Vlasov, Y. A. (2007). “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator.” Optics express, Vol. 15, No. 25, pp. 17106-17113.
  • Guarino, A., Poberaj, G., Rezzonico, D., Degl'Innocenti, R. and Gunter, P. (2007). “Electro–optically tunable microring resonators in lithium niobate.” Nature photonics, Vol. 1, No. 7, pp. 407.
  • Gunn, C. (2006). “CMOS photonics for high-speed interconnects.” IEEE micro, Vol. 26, No. 2, pp. 58-66.
  • Gunn, C. (2006). “Silicon Photonics: Poised to Invade Local Area Networks." Photonics Spectra, Vol. 40, No. 3, pp. 62-69.
  • Hammer, M., Hiremath, K. R. and Stoffer, R. (2004). “Analytical approaches to the description of optical microresonator devices.” Proc., AIP conference proceedings, AIP, Melville, NY, USA, Vol. 709, No. 1, pp. 48-71.
  • Hardesty L. MIT News. 2009., http://news.mit.edu/2009/optical-computing [Accessed 23 Oct 2018].
  • Heebner, J. E., Wong, V., Schweinsberg, A., Boyd, R. W. and Jackson, D. J. (2004). “Optical transmission characteristics of fiber ring resonators.” IEEE journal of quantum electronics, Vol. 40, No. 6, pp. 726-30.
  • Ladd, T. D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C. and O'Brien, J. L. (2010). “Quantum computers.” Nature, Vol. 464, No. 7285, pp. 45.
  • Larger, L., Soriano, M. C., Brunner, D., Appeltant, L., Gutierrez, J. M., Pesquera, L., Mirasso, C. R. and Fischer, I. (2012). “Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing.” Optics express, Vol. 20, No. 3, pp. 3241-9.
  • Lin, S., Ishikawa, Y. and Wada, K. (2012). “Demonstration of optical computing logics based on binary decision diagram.” Optics Express, Vol. 20, No. 2, pp. 1378-84.
  • Little, B. E., Chu, S. T., Haus, H. A., Foresi, J. and Laine, J. P. (1997). “Microring resonator channel dropping filters.” Journal of lightwave technology, Vol. 15, No. 6, pp. 998-1005.
  • Marcatili, E. A. (1969). “Bends in optical dielectric guides.” Bell System Technical Journal, Vol. 48, No. 7, pp. 2103-32.
  • Miller, D., (2010). “Device requirements for optical interconnects to CMOS silicon chips.” Proc., Integrated Photonics Research, Silicon and Nanophotonics, Monterey, California, USA, pp. PMB3.
  • Miller, D.A. (2010). “Are optical transistors the logical next step?” Nature Photonics, Vol. 4, No.1, pp. 3.
  • Notomi, M., Shinya, A., Mitsugi, S., Kira, G., Kuramochi, E. and Tanabe, T. (2005). “Optical bistable switching action of Si high-Q photonic-crystal nanocavities.” Optics Express, Vol. 13, No. 7, pp. 2678-87.
  • Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M. and Massar, S. (2012). “Optoelectronic reservoir computing.” Scientific reports, Vol. 2, pp. 287.
  • Pesin, D. and MacDonald, A. H. (2012). “Spintronics and pseudospintronics in graphene and topological insulators.” Nat. Mater., Vol. 11, No. 5, pp. 409.
  • Rios, C., Stegmaier, M., Cheng, Z., Youngblood, N., Wright, C. D., Pernice, W. H. and Bhaskaran, H. (2018). “Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics.” Optical Materials Express, Vol. 8, No. 9, pp. 2455-70.
  • Rios, C., Stegmaier, M., Hosseini, P., Wang, D., Scherer, T., Wright, C. D., Bhaskaran, H. and Pernice, W. H. (2015). “Integrated all-photonic non-volatile multi-level memory.” Nature Photonics, Vol. 9, No. 11, pp. 725.
  • Shastri, B. J., Tait, A. N., Ferreira de Lima, T., Nahmias, M. A., Peng, H. T. and Prucnal, P. R. (2018). Principles of neuromorphic photonics. Unconventional Computing: A Volume in the Encyclopedia of Complexity and Systems Science, Second Edition, Springer Berlin, Heidelberg, Germany, pp. 83-118.
  • Sordan, R., Traversi, F. and Russo, V. (2009). “Logic gates with a single graphene transistor.” Applied Physics Letters, Vol. 94, No. 7, pp. 51.
  • Stegmaier, M., Rios, C., Bhaskaran, H., Wright, C. D. and Pernice, W. H. (2017). “Nonvolatile All‐Optical 1× 2 Switch for Chipscale Photonic Networks.” Advanced Optical Materials, Vol. 5, No. 1, pp. 1600346.
  • Tans S. J., Verschueren, A.R. and Dekker C. (1998). “Room-temperature transistor based on a single carbon nanotube.” Nature, Vol. 393, No. 6680, pp. 49.
  • Tazawa, H., Kuo, Y. H., Dunayevskiy, I., Luo, J., Jen, A. K., Fetterman, H. R. and Steier, W. H. (2006) “Ring resonator-based electrooptic polymer traveling-wave modulator.” Journal of lightwave technology, Vol. 24, No. 9, pp. 3514.
  • Woods, D. and Naughton, T. J. (2012). “Optical computing: Photonic neural networks.” Nature Physics, Vol. 8, No.4, pp. 257.
  • Wu, Z., Chen, Y., Xu, P., Shao, Z., Zhang, T., Zhang, Y., Liu, L., Yang,C., Zhou, L., Chen, H. and Yu, S. (2016). “Graphene-on-silicon nitride microring resonators with high modulation depth.” Proc., Asia Communications and Photonics Conference, Optical Society of America, Wuhan, China, pp. AF2A-10.
  • Yakar, O., Nie, Y. Wada, K., Agarwal, A., and Ercan, İ., (2019). “Energy Efficiency of Microring Resonator (MRR)-Based Binary Decision Diagram (BDD) Circuits.” Submitted
  • Yoshikawa, N., Matsuzaki, F., Nakajima, N. and Yoda, K. (2002). “Design and component test of a 1-bit RSFQ microprocessor.” Physica C: Superconductivity, Vol. 378, pp. 1454-60.
There are 43 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ozan Yakar 0000-0003-1357-8920

İlke Ercan 0000-0003-1339-9703

Publication Date October 1, 2019
Published in Issue Year 2019 Volume: 3 Issue: 4

Cite

APA Yakar, O., & Ercan, İ. (2019). LOGIC THRESHOLD FOR MICRORING RESONATOR-BASED BDD CIRCUITS: PHYSICAL AND OPERATIONAL ANALYSES. Turkish Journal of Engineering, 3(4), 189-196. https://doi.org/10.31127/tuje.537871
AMA Yakar O, Ercan İ. LOGIC THRESHOLD FOR MICRORING RESONATOR-BASED BDD CIRCUITS: PHYSICAL AND OPERATIONAL ANALYSES. TUJE. October 2019;3(4):189-196. doi:10.31127/tuje.537871
Chicago Yakar, Ozan, and İlke Ercan. “LOGIC THRESHOLD FOR MICRORING RESONATOR-BASED BDD CIRCUITS: PHYSICAL AND OPERATIONAL ANALYSES”. Turkish Journal of Engineering 3, no. 4 (October 2019): 189-96. https://doi.org/10.31127/tuje.537871.
EndNote Yakar O, Ercan İ (October 1, 2019) LOGIC THRESHOLD FOR MICRORING RESONATOR-BASED BDD CIRCUITS: PHYSICAL AND OPERATIONAL ANALYSES. Turkish Journal of Engineering 3 4 189–196.
IEEE O. Yakar and İ. Ercan, “LOGIC THRESHOLD FOR MICRORING RESONATOR-BASED BDD CIRCUITS: PHYSICAL AND OPERATIONAL ANALYSES”, TUJE, vol. 3, no. 4, pp. 189–196, 2019, doi: 10.31127/tuje.537871.
ISNAD Yakar, Ozan - Ercan, İlke. “LOGIC THRESHOLD FOR MICRORING RESONATOR-BASED BDD CIRCUITS: PHYSICAL AND OPERATIONAL ANALYSES”. Turkish Journal of Engineering 3/4 (October 2019), 189-196. https://doi.org/10.31127/tuje.537871.
JAMA Yakar O, Ercan İ. LOGIC THRESHOLD FOR MICRORING RESONATOR-BASED BDD CIRCUITS: PHYSICAL AND OPERATIONAL ANALYSES. TUJE. 2019;3:189–196.
MLA Yakar, Ozan and İlke Ercan. “LOGIC THRESHOLD FOR MICRORING RESONATOR-BASED BDD CIRCUITS: PHYSICAL AND OPERATIONAL ANALYSES”. Turkish Journal of Engineering, vol. 3, no. 4, 2019, pp. 189-96, doi:10.31127/tuje.537871.
Vancouver Yakar O, Ercan İ. LOGIC THRESHOLD FOR MICRORING RESONATOR-BASED BDD CIRCUITS: PHYSICAL AND OPERATIONAL ANALYSES. TUJE. 2019;3(4):189-96.
Flag Counter