Yıl 2020, Cilt 4 , Sayı 1, Sayfalar 47 - 56 2020-01-01

THE IDENTIFICATION OF COASTLINE CHANGES FROM LANDSAT 8 SATELLITE DATA USING ARTIFICIAL NEURAL NETWORKS AND K-NEAREST NEIGHBOR

Mustafa Hayri Kesikoğlu [1] , Sevim Yasemin Çiçekli [2] , Tolga Kaynak [3]


Coastline boundaries are constantly changing due to natural or human-induced events that take place in the world. Therefore it is necessary to correctly observed coastline boundaries. Remote sensing is one of the most frequently used methods in the change of coastal areas. In this study, it is aimed to solve the problem of choosing the right method for coastal change observation. This paper introduces a spatial pixel-based and object based image classification approach to recognize changing areas in coastline. The coastline boundary changes occurred in a part of Yamula Dam Lake in Kayseri province were examined using three multispectral Landsat 8 Data Continuity Mission (LDCM) satellite images of March, August and November 2016. Firstly, image-to-image registration processing was performed to register the three satellite images. Then, each satellite image was classified into two information classes either other fields or water by using pixel based Artificial Neural Networks (ANN) and object based K-Nearest Neighbor (KNN) method. The change images were formed for March-August and August-November pairs by using the obtained classification images. The post classification comparison method was used to determine the changes in coastline boundaries. At the end of the study, seasonal changes from water to land and from land to water were detected. According to the result of the changes there is an increase from March to August and decrease from August to November in Yamula Dam Lake.

Artificial neural networks; k-nearest neighbor; change detection; Landsat 8 LDCM
  • A. M. Al Fugara, A., M., B. Pradhan, B., and T. A. Mohamed, T., A., (2009). “Improvement of land-use classification using object-oriented and fuzzy logic approach.” Applied Geomatics, 1(4), 111.
  • Baek, S., and Sung, K. M. (2000). “Fast K-nearest-neighbour search algorithm for nonparametric classification.” Electronics Letters, 36(21), 1821-1822.
  • Blaschke, T. (2010). “Object based image analysis for remote sensing.” ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2-16.
  • Chebud, Y., Naja, G. M., Rivero, R. G., and Melesse, A. M. (2012). “Water quality monitoring using remote sensing and an artificial neural network.” Water, Air, and Soil Pollution, 223(8), 4875-4887.
  • Denoeux, T. (1995). “A k-nearest neighbor classification rule based on Dempster-Shafer theory.” IEEE Transactions on Systems, Man, and Cybernetics, 25(5), 804-813.
  • Erener, A., and Yakar, M. (2012). “Monitoring Coastline Change Using Remote Sensing and GIS Technologies.” Lecture Notes in Information Technology, 30, 310-314.
  • Franco-Lopez, H., Ek, A. R., and Bauer, M. E. (2001). “Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method.” Remote Sensing of Environment, 77(3), 251-274.
  • Güney, Y., and Polat, S. (2015). “CoastlineChange Detection Using Remote Sensing Data: The Case of Aliaga and Candarli.” Journal of Aeronautics and Space Technologies/Havacilik ve Uzay Teknolojileri Dergisi, 8(1).
  • Hassan-Esfahani, L., Torres-Rua, A., Jensen, A., and McKee, M. (2015). “Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks.” Remote Sensing, 7(3), 2627-2646.
  • Haykin, S. (1994). Neural networks: A comprehensive foundation, Macmillan College Publishing Company, New York, USA.
  • Hussain, M., Chen, D., Cheng, A., Wei, H., and Stanley, D. (2013). “Change detection from remotely sensed images: From pixel-based to object-based approaches.” ISPRS Journal of Photogrammetry and Remote Sensing, 80, 91-106.
  • Isa N. A. M., Mashor M. Y, Othman N. H., Zamli K.Z., (2005). “Application of artificial neural networks in the classification of cervical cells based on the Bethesda system.” Journal of JICT, 4, 77-97.
  • Karaburun, A., and Demirci, A. (2010). “Coastline changes in Istanbul between 1987 and 2007.” Scientific Research and Essays, 5(19), 3009-3017.
  • Kesikoğlu, M. H., Atasever, Ü. H., and Özkan, C. (2013). “Uzaktan Algılamada Kontrolsüz Değişim Belirleme.” Tmmob Harita Ve Kadastro Mühendisleri Odası, 14. Türkiye Harita Bilimsel Ve Teknik Kurultayı, Ankara.
  • Kesikoğlu, M. H. (2013). Research Of Coastal Change In Sultan Marshes National Park And Ramsar Site With Satellite Image Analysis, MSc. Thesis, University of Erciyes, Kayseri, Turkey.
  • Kesikoğlu M.H., Çiçekli S.Y., Kaynak T., Özkan C. (2017). “The determination of coastline changes using artificial neural networks in Yamula Dam Lake, Turkey.” The 8th International Conference on Information Technology, Amman, Ürdün, 1-4.
  • Kuleli, T., Guneroglu, A., Karsli, F., and Dihkan, M. (2011). “Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey.” Ocean Engineering, 38(10), 1141-1149.
  • Lillesand, T., Kiefer, R. W., and Chipman, J. (2014). Remote sensing and image interpretation. John Wiley and Sons.
  • McFeeters, S. K. (1996). “The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features.” International Journal of Remote Sensing, 17(7), 1425-1432.
  • McRoberts, R. E., Nelson, M. D., and Wendt, D. G. (2002). “Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique.” Remote Sensing of Environment, 82(2), 457-468.
  • Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., and Weng, Q. (2011). “Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery.” Remote Sensing of Environment, 115(5), 1145-1161.
  • Ozpolat, E. and Demir, T. (2014). “Coğrafi Bilgi Sistemleri Ve Uzaktan Algılama Yöntemleriylekıyı Çizgisi Değişimi Belirleme : Seyhan Deltası.” Xvi.,Akademik Bilişim, Mersin Üniversitesi ,Mersin.
  • Prabaharan, S., Raju, K. S., Lakshumanan, C., and Ramalingam, M. (2010). “Remote sensing and GIS applications on change detection study in coastal zone using multi temporal satellite data.” International Journal of Geomatics and Geosciences, 1(2), 159.
  • Pradhan, B., and Lee, S. (2010). “Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. ” Environmental Modelling and Software, 25(6), 747-759.
  • Sang, L., Xu, Y., Cao, R., Chen, Y., Guo, Y., and Xu, R. (2011). “Modelling of GaN HEMT by using an improved k-nearest neighbors algorithm. ” Journal of Electromagnetic Waves and Applications, 25(7), 949-959.
  • Sarle, W. S. (1994). “Neural networks and statistical models.” Proceedings Of The Nineteenth Annual Sas Users Group International Conference.
  • Shetty, A., Jayappa, K. S., and Mitra, D. (2015). “Shoreline change analysis of Mangalore coast and morphometric analysis of Netravathi-Gurupur and Mulky-Pavanje spits. ” Aquatic Procedia, 4, 182-189.
  • Tabarroni, A. (2010). Remote sensing and image interpretation change detection analysis: case study of borgo panigale and reno districts, MSc. Thesis, University of Florence, Florence, Italy.
  • Wang, X. Z., Zhang, H. G., Fu, B., and Shi, A. Q. (2013). “Analysis on the coastline change and erosion-accretion evolution of the Pearl River Estuary, China, based on remote-sensing images and nautical charts. ” Journal of Applied Remote Sensing, 7(1), 073519-073519.
  • What are the band designations for the Landsat satellites?, http://landsat.usgs.gov/band_designations_landsat_satellites.php [Accessed 22 June 2017].
  • Yamula Barajı (n.d.), http://www.kayseri.gov.tr/yamula-baraji [Accessed 8 March 2017]
  • Yu, Q., Gong, P., Clinton, N., Biging, G., Kelly, M., and Schirokauer, D. (2006). “Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. ” Photogrammetric Engineering and Remote Sensing, 72(7), 799-811.
  • Zhang, H., Li, Q Liu, J., Du, X., Dong, T., McNairn, H., Champagne, C., Liu, M., and Shang, J.(2017). “Object-based crop classification using multi-temporal SPOT-5 ımagery and textural features with a random forest classifier. ” Geocarto International, 1-19.
Birincil Dil en
Konular Mühendislik
Bölüm Articles
Yazarlar

Orcid: 0000-0001-5199-0815
Yazar: Mustafa Hayri Kesikoğlu (Sorumlu Yazar)
Kurum: ERCİYES ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, HARİTA MÜHENDİSLİĞİ BÖLÜMÜ
Ülke: Turkey


Orcid: 0000-0002-8140-1265
Yazar: Sevim Yasemin Çiçekli
Kurum: ÇUKUROVA ÜNİVERSİTESİ, CEYHAN MÜHENDİSLİK FAKÜLTESİ, HARİTA MÜHENDİSLİĞİ BÖLÜMÜ
Ülke: Turkey


Orcid: 0000-0002-0718-9091
Yazar: Tolga Kaynak
Kurum: ERCİYES ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ, HARİTA MÜHENDİSLİĞİ BÖLÜMÜ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 1 Ocak 2020

Bibtex @araştırma makalesi { tuje599359, journal = {Turkish Journal of Engineering}, issn = {}, eissn = {2587-1366}, address = {Mersin Üniversitesi Mühendislik Fakültesi Çiftlikköy Kampüsü 33343, MERSİN}, publisher = {Murat YAKAR}, year = {2020}, volume = {4}, pages = {47 - 56}, doi = {10.31127/tuje.599359}, title = {THE IDENTIFICATION OF COASTLINE CHANGES FROM LANDSAT 8 SATELLITE DATA USING ARTIFICIAL NEURAL NETWORKS AND K-NEAREST NEIGHBOR}, key = {cite}, author = {Kesikoğlu, Mustafa Hayri and Çiçekli, Sevim Yasemin and Kaynak, Tolga} }
APA Kesikoğlu, M , Çiçekli, S , Kaynak, T . (2020). THE IDENTIFICATION OF COASTLINE CHANGES FROM LANDSAT 8 SATELLITE DATA USING ARTIFICIAL NEURAL NETWORKS AND K-NEAREST NEIGHBOR. Turkish Journal of Engineering , 4 (1) , 47-56 . DOI: 10.31127/tuje.599359
MLA Kesikoğlu, M , Çiçekli, S , Kaynak, T . "THE IDENTIFICATION OF COASTLINE CHANGES FROM LANDSAT 8 SATELLITE DATA USING ARTIFICIAL NEURAL NETWORKS AND K-NEAREST NEIGHBOR". Turkish Journal of Engineering 4 (2020 ): 47-56 <https://dergipark.org.tr/tr/pub/tuje/issue/49320/599359>
Chicago Kesikoğlu, M , Çiçekli, S , Kaynak, T . "THE IDENTIFICATION OF COASTLINE CHANGES FROM LANDSAT 8 SATELLITE DATA USING ARTIFICIAL NEURAL NETWORKS AND K-NEAREST NEIGHBOR". Turkish Journal of Engineering 4 (2020 ): 47-56
RIS TY - JOUR T1 - THE IDENTIFICATION OF COASTLINE CHANGES FROM LANDSAT 8 SATELLITE DATA USING ARTIFICIAL NEURAL NETWORKS AND K-NEAREST NEIGHBOR AU - Mustafa Hayri Kesikoğlu , Sevim Yasemin Çiçekli , Tolga Kaynak Y1 - 2020 PY - 2020 N1 - doi: 10.31127/tuje.599359 DO - 10.31127/tuje.599359 T2 - Turkish Journal of Engineering JF - Journal JO - JOR SP - 47 EP - 56 VL - 4 IS - 1 SN - -2587-1366 M3 - doi: 10.31127/tuje.599359 UR - https://doi.org/10.31127/tuje.599359 Y2 - 2019 ER -
EndNote %0 Turkish Journal of Engineering THE IDENTIFICATION OF COASTLINE CHANGES FROM LANDSAT 8 SATELLITE DATA USING ARTIFICIAL NEURAL NETWORKS AND K-NEAREST NEIGHBOR %A Mustafa Hayri Kesikoğlu , Sevim Yasemin Çiçekli , Tolga Kaynak %T THE IDENTIFICATION OF COASTLINE CHANGES FROM LANDSAT 8 SATELLITE DATA USING ARTIFICIAL NEURAL NETWORKS AND K-NEAREST NEIGHBOR %D 2020 %J Turkish Journal of Engineering %P -2587-1366 %V 4 %N 1 %R doi: 10.31127/tuje.599359 %U 10.31127/tuje.599359
ISNAD Kesikoğlu, Mustafa Hayri , Çiçekli, Sevim Yasemin , Kaynak, Tolga . "THE IDENTIFICATION OF COASTLINE CHANGES FROM LANDSAT 8 SATELLITE DATA USING ARTIFICIAL NEURAL NETWORKS AND K-NEAREST NEIGHBOR". Turkish Journal of Engineering 4 / 1 (Ocak 2020): 47-56 . https://doi.org/10.31127/tuje.599359
AMA Kesikoğlu M , Çiçekli S , Kaynak T . THE IDENTIFICATION OF COASTLINE CHANGES FROM LANDSAT 8 SATELLITE DATA USING ARTIFICIAL NEURAL NETWORKS AND K-NEAREST NEIGHBOR. TUJE. 2020; 4(1): 47-56.
Vancouver Kesikoğlu M , Çiçekli S , Kaynak T . THE IDENTIFICATION OF COASTLINE CHANGES FROM LANDSAT 8 SATELLITE DATA USING ARTIFICIAL NEURAL NETWORKS AND K-NEAREST NEIGHBOR. Turkish Journal of Engineering. 2020; 4(1): 56-47.