Yıl 2022,
Cilt: 6 Sayı: 1, 63 - 66, 30.01.2022
Şinasi Bingöl
,
Cahit Bilim
,
Cengiz Atiş
,
Uğur Durak
Kaynakça
- Atabey İ İ, Karahan O, Bilim C & Atiş C D (2020). The influence of activator type and quantity on the transport properties of class F fly ash geopolymer. Construction and Building Materials, 264. https://doi.org/10.1016/j.conbuildmat.2020.120268
- Çelikten S, Sarıdemir M & Deneme İ Ö (2019). Mechanical and microstructural properties of alkali-activated slag and slag + fly ash mortars exposed to high temperature. Construction and Building Materials, 217, 50–61. https://doi.org/10.1016/j.conbuildmat.2019.05.055
- Brooks R, Bahadory M, Tovia F & Rostami H (2010). Properties of alkali-activated fly ash: High performance to lightweight. International Journal of Sustainable Engineering, 3(3), 211–218. https://doi.org/10.1080/19397038.2010.487162
- Fu Y, Cai L & Yonggen W (2011). Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete. Construction and Building Materials, 25(7), 3144–3148. https://doi.org/10.1016/j.conbuildmat.2010.12.006
- Juenger M C G, Winnefeld F, Provis J L & Ideker J H (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012
- Lämmlein T D, Messina F, Wyrzykowski M, Terrasi G P & Lura P (2019). Low clinker high performance concretes and their potential in CFRP-prestressed structural elements. Cement and Concrete Composites, 100(February), 130–138. https://doi.org/10.1016/j.cemconcomp.2019.02.014
- Meyer C (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601–605. https://doi.org/10.1016/j.cemconcomp.2008.12.010
- Peng J X, Huang L, Zhao Y B, Chen P, Zeng, L & Zheng W (2012). Modeling of Carbon Dioxide Measurement on Cement Plants. Advanced Materials Research, 610–613, 2120–2128.
- Sun P & Wu H C (2013). Chemical and freeze-thaw resistance of fly ash-based inorganic mortars. Fuel, 111, 740–745. https://doi.org/10.1016/j.fuel.2013.04.070
- TS EN 1008. (2003). Mixing water for concrete—Specifications for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete. TSI.
- TS EN 196-1. (2016). Methods of testing cement—part 1: determination of strength. TSI.
- TS EN 197-1. (2012). Cement–Part 1: compositions and conformity criteria for common cements. In Turkish Standard Institution. TSI.
- Xie N, Dang Y & Shi X (2019). New insights into how MgCl 2 deteriorates Portland cement concrete. Cement and Concrete Research, 120(April), 244–255. https://doi.org/10.1016/j.cemconres.2019.03.026
- Yuan Y, Zhao R, Li R, Wang Y, Cheng Z, Li F & John M Z (2020). Frost resistance of fiber-reinforced blended slag and Class F fly ash-based geopolymer concrete under the coupling effect of freeze-thaw cycling and axial compressive loading. Construction and Building Materials, 250, 118831. https://doi.org/10.1016/j.conbuildmat.2020.118831
- Zhang P, Gao Z, Wang J, Guo J, Hu S & Ling Y (2020). Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review. In Journal of Cleaner Production (Vol. 270). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.122389
- Zhang P, Zheng Y, Wang K & Zhang J (2018). A review on properties of fresh and hardened geopolymer mortar. Composites Part B: Engineering, 152(April), 79–95. https://doi.org/10.1016/j.compositesb.2018.06.031
- Zhao R, Yuan Y, Cheng Z, Wen T, Li J, Li F & Ma Z J (2019). Freeze-thaw resistance of Class F fly ash-based geopolymer concrete. Construction and Building Materials, 222, 474–483. https://doi.org/10.1016/j.conbuildmat.2019.06.166
- Zhuang X Y, Chen L, Komarneni S, Zhou C H, Tong D S, Yang H M, Yu W H & Wang H (2016). Fly ash-based geopolymer: Clean production, properties and applications. Journal of Cleaner Production, 125, 253–267. https://doi.org/10.1016/j.jclepro.2016.03.019
Freeze-thaw resistance of blast furnace slag alkali activated mortars
Yıl 2022,
Cilt: 6 Sayı: 1, 63 - 66, 30.01.2022
Şinasi Bingöl
,
Cahit Bilim
,
Cengiz Atiş
,
Uğur Durak
Öz
In this study, blast furnace slag geopolymer mortars were prepared in prism molds with the size of 4 x 4 x 16 cm by alkali activating powdered sodium meta silicate (Na2SiO3). The mortar mixtures prepared to contain sodium in different proportions were cured with 3 different curing methods, and 300 cycles of freeze-thaw were applied, and strength and weight losses were examined. Control samples prepared with PC were also exposed to freeze-thaw cycles and the results were compared with each other. It was observed that 8% sodium added geopolymer mortars significantly preserved their compressive strength and weight. Especially, the compressive strength of the samples produced with 8% sodium and exposed to freeze-thaw cycle after 28 days of air curing increased by around 32%.
Kaynakça
- Atabey İ İ, Karahan O, Bilim C & Atiş C D (2020). The influence of activator type and quantity on the transport properties of class F fly ash geopolymer. Construction and Building Materials, 264. https://doi.org/10.1016/j.conbuildmat.2020.120268
- Çelikten S, Sarıdemir M & Deneme İ Ö (2019). Mechanical and microstructural properties of alkali-activated slag and slag + fly ash mortars exposed to high temperature. Construction and Building Materials, 217, 50–61. https://doi.org/10.1016/j.conbuildmat.2019.05.055
- Brooks R, Bahadory M, Tovia F & Rostami H (2010). Properties of alkali-activated fly ash: High performance to lightweight. International Journal of Sustainable Engineering, 3(3), 211–218. https://doi.org/10.1080/19397038.2010.487162
- Fu Y, Cai L & Yonggen W (2011). Freeze-thaw cycle test and damage mechanics models of alkali-activated slag concrete. Construction and Building Materials, 25(7), 3144–3148. https://doi.org/10.1016/j.conbuildmat.2010.12.006
- Juenger M C G, Winnefeld F, Provis J L & Ideker J H (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012
- Lämmlein T D, Messina F, Wyrzykowski M, Terrasi G P & Lura P (2019). Low clinker high performance concretes and their potential in CFRP-prestressed structural elements. Cement and Concrete Composites, 100(February), 130–138. https://doi.org/10.1016/j.cemconcomp.2019.02.014
- Meyer C (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601–605. https://doi.org/10.1016/j.cemconcomp.2008.12.010
- Peng J X, Huang L, Zhao Y B, Chen P, Zeng, L & Zheng W (2012). Modeling of Carbon Dioxide Measurement on Cement Plants. Advanced Materials Research, 610–613, 2120–2128.
- Sun P & Wu H C (2013). Chemical and freeze-thaw resistance of fly ash-based inorganic mortars. Fuel, 111, 740–745. https://doi.org/10.1016/j.fuel.2013.04.070
- TS EN 1008. (2003). Mixing water for concrete—Specifications for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete. TSI.
- TS EN 196-1. (2016). Methods of testing cement—part 1: determination of strength. TSI.
- TS EN 197-1. (2012). Cement–Part 1: compositions and conformity criteria for common cements. In Turkish Standard Institution. TSI.
- Xie N, Dang Y & Shi X (2019). New insights into how MgCl 2 deteriorates Portland cement concrete. Cement and Concrete Research, 120(April), 244–255. https://doi.org/10.1016/j.cemconres.2019.03.026
- Yuan Y, Zhao R, Li R, Wang Y, Cheng Z, Li F & John M Z (2020). Frost resistance of fiber-reinforced blended slag and Class F fly ash-based geopolymer concrete under the coupling effect of freeze-thaw cycling and axial compressive loading. Construction and Building Materials, 250, 118831. https://doi.org/10.1016/j.conbuildmat.2020.118831
- Zhang P, Gao Z, Wang J, Guo J, Hu S & Ling Y (2020). Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review. In Journal of Cleaner Production (Vol. 270). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2020.122389
- Zhang P, Zheng Y, Wang K & Zhang J (2018). A review on properties of fresh and hardened geopolymer mortar. Composites Part B: Engineering, 152(April), 79–95. https://doi.org/10.1016/j.compositesb.2018.06.031
- Zhao R, Yuan Y, Cheng Z, Wen T, Li J, Li F & Ma Z J (2019). Freeze-thaw resistance of Class F fly ash-based geopolymer concrete. Construction and Building Materials, 222, 474–483. https://doi.org/10.1016/j.conbuildmat.2019.06.166
- Zhuang X Y, Chen L, Komarneni S, Zhou C H, Tong D S, Yang H M, Yu W H & Wang H (2016). Fly ash-based geopolymer: Clean production, properties and applications. Journal of Cleaner Production, 125, 253–267. https://doi.org/10.1016/j.jclepro.2016.03.019