Research Article
BibTex RIS Cite
Year 2022, Volume: 6 Issue: 2, 149 - 155, 15.04.2022
https://doi.org/10.31127/tuje.866955

Abstract

References

  • Abrate S (1998). The Dynamics of Impact on Composite Structure, Impact Response and Dynamic Failure of Composites and Laminate Materials, Part 2, editors JK Kim and T., X., Yu. Trans Tech Publications, Switzerland.
  • Adin H (2018). Numerical analysis of bending behavior of elliptical perforated aluminum plates repaired with composite patch. DÜMF Journal of Engineering 9(2), 713-725.
  • Ahangaran F, Hayaty M, Navarchian A H, Pei Y & Picchioni F (2019). Development of self-healing epoxy composites via incorporation of microencapsulated epoxy and mercaptan in poly (methyl methacrylate) shell. Polymer Testing, 73, 395-403.
  • Aïssa B, Therriault D, Haddad E & Jamroz W (2012). Self-healing materials systems: overview of major approaches and recent developed technologies. Advances in Materials Science and Engineering, 2012.
  • Algaifi H A, Bakar S A, Alyousef R, Sam A R M, Ibrahim M W, Shahidan S, ... & Salami B A (2021). Bio-inspired self-healing of concrete cracks using new B. pseudomycoides species. Journal of Materials Research and Technology.
  • Amamoto Y, Kamada J, Otsuka H, Takahara A & Matyjaszewski K (2011). Repeatable photoinduced self‐healing of covalently cross‐linked polymers through reshuffling of trithiocarbonate units. Angewandte Chemie, 123(7), 1698-1701.
  • Brown E N (2011). Use of the tapered double-cantilever beam geometry for fracture toughness measurements and its application to the quantification of self-healing. The Journal of Strain Analysis for Engineering Design, 46(3), 167-186.
  • Cai Y, Zou H, Zhou S, Chen Y & Liang M (2020). Room-Temperature Self-Healing Ablative Composites via Dynamic Covalent Bonds for High-Performance Applications. ACS Applied Polymer Materials, 2(9), 3977-3987.
  • Cao S, Zhu W & Liu T (2020). Bio-inspired self-healing polymer foams with bilayered capsule systems. Composites Science and Technology, 195, 108189.
  • Dağdelen O (2010). Repair optimization for damaged composite plates. Doctoral dissertation, DEÜ Institute of science, İzmir (in Turkish).
  • Do Nascimento A A, Fernandez F, da Silva F S, Ferreira E P, Melo J D D & Barbosa A P C (2020). Addition of poly (ethylene-co-methacrylic acid) (EMAA) as self-healing agent to carbon-epoxy composites. Composites Part A: Applied Science and Manufacturing, 137, 106016.
  • Du W, Jin Y, Lai S, Shi L, Shen Y & Yang H (2020). Multifunctional light-responsive graphene-based polyurethane composites with shape memory, self-healing, and flame retardancy properties. Composites Part A: Applied Science and Manufacturing, 128, 105686.
  • Ebrahimnezhad-Khaljiri H & Eslami-Farsani R (2020). The tensile properties and interlaminar shear strength of microcapsules-glass fibers/epoxy self-healable composites. Engineering Fracture Mechanics, 106937.
  • Erkek B (2019). Investigation of the effects of thermal aging on the buckling behavior of composite boards repaired using patches and adhesives. Master's Thesis, Dicle University Institute of Science, Diyarbakır (in Turkish).
  • Everitt D T, Luterbacher R, Coope T S, Trask R S, Wass D F & Bond I P (2015). Optimisation of epoxy blends for use in extrinsic self-healing fibre-reinforced composites. Polymer, 69, 283-292.
  • Fang Y, Du X, Du Z, Wang H & Cheng X (2017). Light-and heat-triggered polyurethane based on dihydroxyl anthracene derivatives for self-healing applications. Journal of Materials Chemistry A, 5(17), 8010-8017.
  • Feng H, Yu F, Zhou Y, Li M, Xiao L & Ao Y (2020). Fabrication of microcapsule-type composites with the capability of underwater self-healing and damage visualization. RSC Advances, 10(56), 33675-33682.
  • He Y, Liu X & Yu Z (2019). Mechanical properties of UV‐curable carbon fiber‐reinforced polymer composite patch: Repair evaluation of damaged aluminum alloy. Polymers for Advanced Technologies, 30(8), 2034-2044.
  • He Z, Jiang S, An N, Li X, Li Q, Wang J, ... & Kang M (2019). Self-healing isocyanate microcapsules for efficient restoration of fracture damage of polyurethane and epoxy resins. Journal of Materials Science, 54(11), 8262-8275.
  • Imato K, Nakajima H, Yamanaka R & Takeda N (2020). Self-healing polyurethane elastomers based on charge-transfer interactions for biomedical applications. Polymer Journal, 1-8.
  • Jin C, Sinawang G, Osaki M, Zheng Y, Yamaguchi H, Harada A & Takashima Y (2020). Self-healing thermoplastic polyurethane linked via host-guest interactions. Polymers, 12(6), 1393.
  • Kara M (2012). Damage behavior under internal pressure of filament wound GRP pipes repaired with patch after low speed impact. Doctoral Thesis, Selçuk University Institute of Science, Konya (in Turkish).
  • Keller M W, White S R & Sottos N R (2007). A self‐healing poly (dimethyl siloxane) elastomer. Advanced Functional Materials, 17(14), 2399-2404.
  • Kilinc İ M (2019). Experimental investigation of bonding parameters in aluminum foam sandwich structures. Master's thesis, Bursa Uludağ University Institute of Science, Bursa (in Turkish).
  • Kim S, Ha J, Yoon S & Kim M (2020). A study on mechanical properties after bonded repair of sandwich composite materials. Modern Physics Letters B, 34(07n09), 2040033.
  • Kumar R, Hynes N R J, Saravanakumar S S, Senthamaraikannan P, Khan A, Asiri A M, ... & Nagarajan S (2020). Concept of self-repair and efficiency measurement in polymer matrix composites. In Self-Healing Composite Materials (pp. 375-391). Woodhead Publishing.
  • Le H H, Böhme F, Sallat A, Wießner S, auf der Landwehr M, Reuter U, ... & Das A (2017). Triggering the Self‐Healing Properties of Modified Bromobutyl Rubber by Intrinsically Electrical Heating. Macromolecular Materials and Engineering, 302(4), 1600385.
  • Li Z, Davidson-Rozenfeld G, Vázquez-González M, Fadeev M, Zhang J, Tian H & Willner I (2018). Multi-triggered supramolecular DNA/bipyridinium dithienylethene hydrogels driven by light, redox, and chemical stimuli for shape-memory and self-healing applications. Journal of the American Chemical Society, 140(50), 17691-17701.
  • Li C, Zhao Q, Yuan J, Hou Y & Tie Y (2019). Simulation and experiment on the effect of patch shape on adhesive repair of composite structures. Journal of Composite Materials, 53(28-30), 4125-4135.
  • Liu Y, Liu Y, Hu H, Liu Z, Pei X, Yu B, ... & Zhou F (2015). Mechanically induced self-healing superhydrophobicity. The Journal of Physical Chemistry C, 119(13), 7109-7114.
  • Meng Y, Yang J C, Lewis C L, Jiang J & Anthamatten M (2016). Photoinscription of chain anisotropy into polymer networks. Macromolecules, 49(23), 9100-9107.
  • Michal B T, Jaye C A, Spencer E J & Rowan S J (2013). Inherently photohealable and thermal shape-memory polydisulfide networks. ACS Macro Letters, 2(8), 694-699.
  • Moreira R D F, de Moura M F S F, Silva F G A, Ramírez F M G & Silva F D R (2020). Numerical comparison of several composite bonded repairs under fatigue loading. Composite Structures, 112250.
  • Piermattei A, Karthikeyan S & Sijbesma R P (2009). Activating catalysts with mechanical force. Nature chemistry, 1(2), 133-137.
  • Pignanelli J, Qian Z, Gu X, Ahamed M J & Rondeau-Gagné S (2020). Modulating the thermomechanical properties and self-healing efficiency of siloxane-based soft polymers through metal–ligand coordination. New Journal of Chemistry, 44(21), 8977-8985.
  • Pittala R K (2021). Effect of epoxy resin healing agent viscosity on the self-healing performance of capsules reinforced polymer composite. Journal of Polymer Research, 28(4), 1-19.
  • Psarras S, Loutas T, Galanopoulos G, Karamadoukis G, Sotiriadis G & Kostopoulos V (2020). Evaluating experimentally and numerically different scarf-repair methodologies of composite structures. International Journal of Adhesion and Adhesives, 97, 102495.
  • Radovic I, Stajcic A, Radisavljevic A, Veljkovic F, Cebela M, Mitic V V & Radojevic V (2020). Solvent effects on structural changes in self-healing epoxy composites. Materials Chemistry and Physics, 256, 123761.
  • Rodriguez R, Bekas D G, Flórez S, Kosarli M & Paipetis A S (2020). Development of self-contained microcapsules for optimised catalyst position in self-healing materials. Polymer, 187, 122084.
  • Souzandeh H & Netravali A N (2019). Self-healing of ‘green’thermoset zein resins with irregular shaped waxy maize starch-based/poly (D, L-lactic-co-glycolic acid) microcapsules. Composites Science and Technology, 183, 107831.
  • Telitel S, Amamoto Y, Poly J, Morlet-Savary F, Soppera O, Lalevée J & Matyjaszewski K (2014). Introduction of self-healing properties into covalent polymer networks via the photodissociation of alkoxyamine junctions. Polymer Chemistry, 5(3), 921-930.
  • Wang C, Fadeev M, Zhang J, Vázquez-González M, Davidson-Rozenfeld G, Tian H & Willner I (2018). Shape-memory and self-healing functions of DNA-based carboxymethyl cellulose hydrogels driven by chemical or light triggers. Chemical science, 9(35), 7145-7152.
  • Watuthanthrige N D A, Ahammed B, Dolan M T, Fang Q, Wu J, Sparks J L, ... & Ye Z (2020). Accelerating dynamic exchange and self-healing using mechanical forces in crosslinked polymers. Materials Horizons, 7(6), 1581-1587.
  • Wertz J T, Mauldin T C & Boday D J (2014). Polylactic acid with improved heat deflection temperatures and self-healing properties for durable goods applications. ACS applied materials & interfaces, 6(21), 18511-18516.
  • Wu D Y, Meure S & Solomon D (2008). Self-healing polymeric materials: a review of recent developments. Progress in polymer science, 33(5), 479-522.
  • Wu X, Li J, Li G, Ling L, Zhang G, Sun R & Wong C P (2018). Heat‐triggered poly (siloxane‐urethane) s based on disulfide bonds for self‐healing application. Journal of Applied Polymer Science, 135(31), 46532.
  • Xu X, Fan P, Ren J, Cheng Y, Ren J, Zhao J & Song R (2018). Self-healing thermoplastic polyurethane (TPU)/polycaprolactone (PCL)/multi-wall carbon nanotubes (MWCNTs) blend as shape-memory composites. Composites Science and Technology, 168, 255-262.
  • Yang Y & Urban M W (2018). Self‐healing of polymers via supramolecular chemistry. Advanced Materials Interfaces, 5(17), 1800384.
  • Ying W B, Yu Z, Kim D H, Lee K J, Hu H, Liu Y, ... & Zhu J (2020). Waterproof, Highly Tough, and Fast Self-Healing Polyurethane for Durable Electronic Skin. ACS Applied Materials & Interfaces, 12(9), 11072-11083.
  • Zhao L, Shi X, Yin Y, Jiang B & Huang Y (2020). A self-healing silicone/BN composite with efficient healing property and improved thermal conductivities. Composites Science and Technology, 186, 107919.
  • Zheng N, Xu Y, Zhao Q & Xie T (2021). Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. Chemical Reviews, 121(3), 1716-1745.
  • Zhu D Y, Cao G S, Qiu W L, Rong M Z & Zhang M Q (2015). Self-healing polyvinyl chloride (PVC) based on microencapsulated nucleophilic thiol-click chemistry. Polymer, 69, 1-9.

Repairing of damaged composite materials and self-healing composites

Year 2022, Volume: 6 Issue: 2, 149 - 155, 15.04.2022
https://doi.org/10.31127/tuje.866955

Abstract

Repairing any damage in composite materials is very important in terms of the mechanical strength of the structure in which they are used. Therefore, the damage needs to be detected and repaired quickly. The increasing use of composite materials in various industries makes it more important to repair damage in composites both quickly and cost effectively. Patch repair method is one of the most preferred methods for repairing damaged composites because it does not create a new tension on the structure it is applied, does not damage the damaged area and is light. In addition, thanks to the embedded microcapsules placed in its matrix, self-healing composites have been studied in recent years. In this study, both the repair of composite materials and self-healing composites are discussed.

References

  • Abrate S (1998). The Dynamics of Impact on Composite Structure, Impact Response and Dynamic Failure of Composites and Laminate Materials, Part 2, editors JK Kim and T., X., Yu. Trans Tech Publications, Switzerland.
  • Adin H (2018). Numerical analysis of bending behavior of elliptical perforated aluminum plates repaired with composite patch. DÜMF Journal of Engineering 9(2), 713-725.
  • Ahangaran F, Hayaty M, Navarchian A H, Pei Y & Picchioni F (2019). Development of self-healing epoxy composites via incorporation of microencapsulated epoxy and mercaptan in poly (methyl methacrylate) shell. Polymer Testing, 73, 395-403.
  • Aïssa B, Therriault D, Haddad E & Jamroz W (2012). Self-healing materials systems: overview of major approaches and recent developed technologies. Advances in Materials Science and Engineering, 2012.
  • Algaifi H A, Bakar S A, Alyousef R, Sam A R M, Ibrahim M W, Shahidan S, ... & Salami B A (2021). Bio-inspired self-healing of concrete cracks using new B. pseudomycoides species. Journal of Materials Research and Technology.
  • Amamoto Y, Kamada J, Otsuka H, Takahara A & Matyjaszewski K (2011). Repeatable photoinduced self‐healing of covalently cross‐linked polymers through reshuffling of trithiocarbonate units. Angewandte Chemie, 123(7), 1698-1701.
  • Brown E N (2011). Use of the tapered double-cantilever beam geometry for fracture toughness measurements and its application to the quantification of self-healing. The Journal of Strain Analysis for Engineering Design, 46(3), 167-186.
  • Cai Y, Zou H, Zhou S, Chen Y & Liang M (2020). Room-Temperature Self-Healing Ablative Composites via Dynamic Covalent Bonds for High-Performance Applications. ACS Applied Polymer Materials, 2(9), 3977-3987.
  • Cao S, Zhu W & Liu T (2020). Bio-inspired self-healing polymer foams with bilayered capsule systems. Composites Science and Technology, 195, 108189.
  • Dağdelen O (2010). Repair optimization for damaged composite plates. Doctoral dissertation, DEÜ Institute of science, İzmir (in Turkish).
  • Do Nascimento A A, Fernandez F, da Silva F S, Ferreira E P, Melo J D D & Barbosa A P C (2020). Addition of poly (ethylene-co-methacrylic acid) (EMAA) as self-healing agent to carbon-epoxy composites. Composites Part A: Applied Science and Manufacturing, 137, 106016.
  • Du W, Jin Y, Lai S, Shi L, Shen Y & Yang H (2020). Multifunctional light-responsive graphene-based polyurethane composites with shape memory, self-healing, and flame retardancy properties. Composites Part A: Applied Science and Manufacturing, 128, 105686.
  • Ebrahimnezhad-Khaljiri H & Eslami-Farsani R (2020). The tensile properties and interlaminar shear strength of microcapsules-glass fibers/epoxy self-healable composites. Engineering Fracture Mechanics, 106937.
  • Erkek B (2019). Investigation of the effects of thermal aging on the buckling behavior of composite boards repaired using patches and adhesives. Master's Thesis, Dicle University Institute of Science, Diyarbakır (in Turkish).
  • Everitt D T, Luterbacher R, Coope T S, Trask R S, Wass D F & Bond I P (2015). Optimisation of epoxy blends for use in extrinsic self-healing fibre-reinforced composites. Polymer, 69, 283-292.
  • Fang Y, Du X, Du Z, Wang H & Cheng X (2017). Light-and heat-triggered polyurethane based on dihydroxyl anthracene derivatives for self-healing applications. Journal of Materials Chemistry A, 5(17), 8010-8017.
  • Feng H, Yu F, Zhou Y, Li M, Xiao L & Ao Y (2020). Fabrication of microcapsule-type composites with the capability of underwater self-healing and damage visualization. RSC Advances, 10(56), 33675-33682.
  • He Y, Liu X & Yu Z (2019). Mechanical properties of UV‐curable carbon fiber‐reinforced polymer composite patch: Repair evaluation of damaged aluminum alloy. Polymers for Advanced Technologies, 30(8), 2034-2044.
  • He Z, Jiang S, An N, Li X, Li Q, Wang J, ... & Kang M (2019). Self-healing isocyanate microcapsules for efficient restoration of fracture damage of polyurethane and epoxy resins. Journal of Materials Science, 54(11), 8262-8275.
  • Imato K, Nakajima H, Yamanaka R & Takeda N (2020). Self-healing polyurethane elastomers based on charge-transfer interactions for biomedical applications. Polymer Journal, 1-8.
  • Jin C, Sinawang G, Osaki M, Zheng Y, Yamaguchi H, Harada A & Takashima Y (2020). Self-healing thermoplastic polyurethane linked via host-guest interactions. Polymers, 12(6), 1393.
  • Kara M (2012). Damage behavior under internal pressure of filament wound GRP pipes repaired with patch after low speed impact. Doctoral Thesis, Selçuk University Institute of Science, Konya (in Turkish).
  • Keller M W, White S R & Sottos N R (2007). A self‐healing poly (dimethyl siloxane) elastomer. Advanced Functional Materials, 17(14), 2399-2404.
  • Kilinc İ M (2019). Experimental investigation of bonding parameters in aluminum foam sandwich structures. Master's thesis, Bursa Uludağ University Institute of Science, Bursa (in Turkish).
  • Kim S, Ha J, Yoon S & Kim M (2020). A study on mechanical properties after bonded repair of sandwich composite materials. Modern Physics Letters B, 34(07n09), 2040033.
  • Kumar R, Hynes N R J, Saravanakumar S S, Senthamaraikannan P, Khan A, Asiri A M, ... & Nagarajan S (2020). Concept of self-repair and efficiency measurement in polymer matrix composites. In Self-Healing Composite Materials (pp. 375-391). Woodhead Publishing.
  • Le H H, Böhme F, Sallat A, Wießner S, auf der Landwehr M, Reuter U, ... & Das A (2017). Triggering the Self‐Healing Properties of Modified Bromobutyl Rubber by Intrinsically Electrical Heating. Macromolecular Materials and Engineering, 302(4), 1600385.
  • Li Z, Davidson-Rozenfeld G, Vázquez-González M, Fadeev M, Zhang J, Tian H & Willner I (2018). Multi-triggered supramolecular DNA/bipyridinium dithienylethene hydrogels driven by light, redox, and chemical stimuli for shape-memory and self-healing applications. Journal of the American Chemical Society, 140(50), 17691-17701.
  • Li C, Zhao Q, Yuan J, Hou Y & Tie Y (2019). Simulation and experiment on the effect of patch shape on adhesive repair of composite structures. Journal of Composite Materials, 53(28-30), 4125-4135.
  • Liu Y, Liu Y, Hu H, Liu Z, Pei X, Yu B, ... & Zhou F (2015). Mechanically induced self-healing superhydrophobicity. The Journal of Physical Chemistry C, 119(13), 7109-7114.
  • Meng Y, Yang J C, Lewis C L, Jiang J & Anthamatten M (2016). Photoinscription of chain anisotropy into polymer networks. Macromolecules, 49(23), 9100-9107.
  • Michal B T, Jaye C A, Spencer E J & Rowan S J (2013). Inherently photohealable and thermal shape-memory polydisulfide networks. ACS Macro Letters, 2(8), 694-699.
  • Moreira R D F, de Moura M F S F, Silva F G A, Ramírez F M G & Silva F D R (2020). Numerical comparison of several composite bonded repairs under fatigue loading. Composite Structures, 112250.
  • Piermattei A, Karthikeyan S & Sijbesma R P (2009). Activating catalysts with mechanical force. Nature chemistry, 1(2), 133-137.
  • Pignanelli J, Qian Z, Gu X, Ahamed M J & Rondeau-Gagné S (2020). Modulating the thermomechanical properties and self-healing efficiency of siloxane-based soft polymers through metal–ligand coordination. New Journal of Chemistry, 44(21), 8977-8985.
  • Pittala R K (2021). Effect of epoxy resin healing agent viscosity on the self-healing performance of capsules reinforced polymer composite. Journal of Polymer Research, 28(4), 1-19.
  • Psarras S, Loutas T, Galanopoulos G, Karamadoukis G, Sotiriadis G & Kostopoulos V (2020). Evaluating experimentally and numerically different scarf-repair methodologies of composite structures. International Journal of Adhesion and Adhesives, 97, 102495.
  • Radovic I, Stajcic A, Radisavljevic A, Veljkovic F, Cebela M, Mitic V V & Radojevic V (2020). Solvent effects on structural changes in self-healing epoxy composites. Materials Chemistry and Physics, 256, 123761.
  • Rodriguez R, Bekas D G, Flórez S, Kosarli M & Paipetis A S (2020). Development of self-contained microcapsules for optimised catalyst position in self-healing materials. Polymer, 187, 122084.
  • Souzandeh H & Netravali A N (2019). Self-healing of ‘green’thermoset zein resins with irregular shaped waxy maize starch-based/poly (D, L-lactic-co-glycolic acid) microcapsules. Composites Science and Technology, 183, 107831.
  • Telitel S, Amamoto Y, Poly J, Morlet-Savary F, Soppera O, Lalevée J & Matyjaszewski K (2014). Introduction of self-healing properties into covalent polymer networks via the photodissociation of alkoxyamine junctions. Polymer Chemistry, 5(3), 921-930.
  • Wang C, Fadeev M, Zhang J, Vázquez-González M, Davidson-Rozenfeld G, Tian H & Willner I (2018). Shape-memory and self-healing functions of DNA-based carboxymethyl cellulose hydrogels driven by chemical or light triggers. Chemical science, 9(35), 7145-7152.
  • Watuthanthrige N D A, Ahammed B, Dolan M T, Fang Q, Wu J, Sparks J L, ... & Ye Z (2020). Accelerating dynamic exchange and self-healing using mechanical forces in crosslinked polymers. Materials Horizons, 7(6), 1581-1587.
  • Wertz J T, Mauldin T C & Boday D J (2014). Polylactic acid with improved heat deflection temperatures and self-healing properties for durable goods applications. ACS applied materials & interfaces, 6(21), 18511-18516.
  • Wu D Y, Meure S & Solomon D (2008). Self-healing polymeric materials: a review of recent developments. Progress in polymer science, 33(5), 479-522.
  • Wu X, Li J, Li G, Ling L, Zhang G, Sun R & Wong C P (2018). Heat‐triggered poly (siloxane‐urethane) s based on disulfide bonds for self‐healing application. Journal of Applied Polymer Science, 135(31), 46532.
  • Xu X, Fan P, Ren J, Cheng Y, Ren J, Zhao J & Song R (2018). Self-healing thermoplastic polyurethane (TPU)/polycaprolactone (PCL)/multi-wall carbon nanotubes (MWCNTs) blend as shape-memory composites. Composites Science and Technology, 168, 255-262.
  • Yang Y & Urban M W (2018). Self‐healing of polymers via supramolecular chemistry. Advanced Materials Interfaces, 5(17), 1800384.
  • Ying W B, Yu Z, Kim D H, Lee K J, Hu H, Liu Y, ... & Zhu J (2020). Waterproof, Highly Tough, and Fast Self-Healing Polyurethane for Durable Electronic Skin. ACS Applied Materials & Interfaces, 12(9), 11072-11083.
  • Zhao L, Shi X, Yin Y, Jiang B & Huang Y (2020). A self-healing silicone/BN composite with efficient healing property and improved thermal conductivities. Composites Science and Technology, 186, 107919.
  • Zheng N, Xu Y, Zhao Q & Xie T (2021). Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. Chemical Reviews, 121(3), 1716-1745.
  • Zhu D Y, Cao G S, Qiu W L, Rong M Z & Zhang M Q (2015). Self-healing polyvinyl chloride (PVC) based on microencapsulated nucleophilic thiol-click chemistry. Polymer, 69, 1-9.
There are 52 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Yusuf Kepir 0000-0002-3536-3931

Alper Günöz 0000-0001-7978-6306

Memduh Kara 0000-0002-5201-5453

Publication Date April 15, 2022
Published in Issue Year 2022 Volume: 6 Issue: 2

Cite

APA Kepir, Y., Günöz, A., & Kara, M. (2022). Repairing of damaged composite materials and self-healing composites. Turkish Journal of Engineering, 6(2), 149-155. https://doi.org/10.31127/tuje.866955
AMA Kepir Y, Günöz A, Kara M. Repairing of damaged composite materials and self-healing composites. TUJE. April 2022;6(2):149-155. doi:10.31127/tuje.866955
Chicago Kepir, Yusuf, Alper Günöz, and Memduh Kara. “Repairing of Damaged Composite Materials and Self-Healing Composites”. Turkish Journal of Engineering 6, no. 2 (April 2022): 149-55. https://doi.org/10.31127/tuje.866955.
EndNote Kepir Y, Günöz A, Kara M (April 1, 2022) Repairing of damaged composite materials and self-healing composites. Turkish Journal of Engineering 6 2 149–155.
IEEE Y. Kepir, A. Günöz, and M. Kara, “Repairing of damaged composite materials and self-healing composites”, TUJE, vol. 6, no. 2, pp. 149–155, 2022, doi: 10.31127/tuje.866955.
ISNAD Kepir, Yusuf et al. “Repairing of Damaged Composite Materials and Self-Healing Composites”. Turkish Journal of Engineering 6/2 (April 2022), 149-155. https://doi.org/10.31127/tuje.866955.
JAMA Kepir Y, Günöz A, Kara M. Repairing of damaged composite materials and self-healing composites. TUJE. 2022;6:149–155.
MLA Kepir, Yusuf et al. “Repairing of Damaged Composite Materials and Self-Healing Composites”. Turkish Journal of Engineering, vol. 6, no. 2, 2022, pp. 149-55, doi:10.31127/tuje.866955.
Vancouver Kepir Y, Günöz A, Kara M. Repairing of damaged composite materials and self-healing composites. TUJE. 2022;6(2):149-55.
Flag Counter