Araştırma Makalesi
BibTex RIS Kaynak Göster

A comparative assessment for efficient oleuropein extraction from olive leaf (Olea europaea L. folium)

Yıl 2023, Cilt: 7 Sayı: 2, 116 - 124, 15.04.2023
https://doi.org/10.31127/tuje.1058500

Öz

Since oleuropein has long been known in the health sector and is abundant directly in our country as the fourth largest olive producer, oleuropein, the predominant phenolic ingredient in olive leaves, was recovered in this study using Soxhlet extraction. The effects of different solvent types (acetonitrile, ethanol, methanol, and water), extraction period (4 cycles, 4 h, and 8 h), particle size (250-500 µm and 900-2000 µm), and pretreatment of olive leaves on the yield of oleuropein were examined to determine the maximum yield. A greater oleuropein yield was obtained when the particle size of olive leaves utilized for extraction was lowered. Furthermore, aqueous solvents revealed a higher yield of oleuropein than pure solvents and prolonging the extraction duration resulted in a significant increase in the amount of oleuropein extracted. On the other hand, pretreatment of olive leaves resulted in a reduction in oleuropein output. As a result, with 36% extraction efficiency in terms of olive leaf conversion, the highest oleuropein extraction yield was obtained as 13.35 mg g-1 dry leaf for 8 h of extraction time using olive leaves with a particle size of 250-500 µm and an 80% methanol solution as solvent.   

Kaynakça

  • Chikezie, P. C., Ibegbulem, C. O., & Mbagwu, F. N. (2015). Bioactive Principles from Medicinal Plants. Research Journal of Phytochemistry, 9(3), 88–115.
  • Del, D., Rodriguez-mateos, A., Spencer, J. P. E., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxidants & Redox Signaling, 18(14),1818–1892.
  • Bayraktar, O., Köse, M. D., & Baspinar, Y. (2019). Development of olive leaf extract loaded fibroin microparticles by spray drying. The Open Drug Discovery Journal, 13, 39–45.
  • Wissam, Z., Ali, A., & Rama, H. (2016). Optimization of extraction conditions for the recovery of phenolic compounds and antioxidants from Syrian olive leaves. Journal of Pharmacognosy and Phytochemistry, 5(5), 390.
  • Nenadis, N., Vervoort, J., Boeren, S., & Tsimidou, M. Z. (2007). Syringa oblata Lindl var. alba as a source of oleuropein and related compounds. Journal of the Science of Food and Agriculture, 87(1), 160–166.
  • Omar, S. H. (2010). Oleuropein in olive and its pharmacological effects. Scientia Pharmaceutica, 78(2), 133–154.
  • Soler-Rivas, C., Espiń, J. C., & Wichers, H. J. (2000). Oleuropein and related compounds. Journal of the Science of Food and Agriculture, 80(7), 1013–1023.
  • Puerta, R. De, Gutierrez, V. R., & Hoult, J. R. S. (1999). Inhibition of Leukocyte 5-Lipoxygenase by Phenolics from Virgin Olive Oil. Biochemical Pharmacology, 57(4), 445–449.
  • Bisignano, G., Tomaino, A., Cascio, R. L. O., & Crisafi, G. (1999). On the In-vitro Antimicrobial Activity of Oleuropein and Hydroxytyrosol. Journal of Pharmacy and Pharmacology, 51(8), 971–974.
  • Maria, P., Marino, A., Saija, A., Uccella, N., & Bisignano, G. (2002). In vitro antimycoplasmal activity of oleuropein. International Journal of Antimicrobial Agents, 20(4), 293–296.
  • Lee-huang, S., Lin, P., Zhang, D., Wook, J., Bao, J., Sun, Y., Chang, Y., Zhang, J., & Lee, P. (2007). Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol: Part I. Integrase inhibition. Biochemical and Biophysical Research Communications, 354(4), 872–878.
  • Visioli, F., Galli, C., & Galli, G. (2002). Biological activities and metabolic fate of olive oil phenols. European Journal of Lipid Science and Technology, 104(9-10), 677–684.
  • Visioli, F., Bogani, P., & Galli, C. (2006). Healthful Properties of Olive Oil Minor Components. Olive Oil (Second Edition) Chemistry and Technology, Editor(s): Dimitrios Boskou, AOCS Press, 173–190.
  • Ghelichkhani, G., Modaresi, M. H., Rashidi, L., Shariatifar, N., Homapour, M., & Arabameri, M. (2019). Effect of the spray and freeze dryers on the bioactive compounds of olive leaf aqueous extract by chemometrics of HCA and PCA. Journal of Food Measurement and Characterization, 13(4), 2751–2763.
  • Piacentini, E., Mazzei, R., Bazzarelli, F., Ranieri, G., Poerio, T., & Giorno, L. (2019). Oleuropein aglycone production and formulation by integrated membrane process. Industrial & Engineering Chemistry Research, 58(36), 16813–16822.
  • da Rosa, G. S., Vanga, S. K., Gariepy, Y., & Raghavan, V. (2019). Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innovative Food Science & Emerging Technologies, 58, 102234.
  • Naleini, N., Rahimi, M., & Heydari, R. (2015). Oleuropein extraction using microfluidic system. Chemical Engineering and Processing: Process Intensification, 92, 1–6.
  • Jaski, J. M., Barão, C. E., Liao, L. M., Pinto, V. S., Zanoelo, E. F., & Cardozo-Filho, L. (2019). β-Cyclodextrin complexation of extracts of olive leaves obtained by pressurized liquid extraction. Industrial Crops and Products, 129, 662–672.
  • Yateem, H., Afaneh, I., & Al-Rimawi, F. (2014). Optimum conditions for oleuropein extraction from olive leaves. Applied Science and Technology Magazine, Corpus ID: 212474866
  • Yasemi, M., Heydarinasab, A., Rahimi, M., & Ardjmand, M. (2017). Microchannels effective method for the extraction of oleuropein compared with conventional methods. Journal of Chemistry, 2017.
  • Baldino, L., Della Porta, G., Osseo, L. S., Reverchon, E., & Adami, R. (2018). Concentrated oleuropein powder from olive leaves using alcoholic extraction and supercritical CO2 assisted extraction. The Journal of Supercritical Fluids, 133, 65–69.
  • del Mar Contreras, M., Lama-Muñoz, A., Espínola, F., Moya, M., Romero, I., & Castro, E. (2020). Valorization of olive mill leaves through ultrasound-assisted extraction. Food Chemistry, 314, 126218.
  • Lama-Muñoz, A., Contreras, M. del M., Espínola, F., Moya, M., Romero, I., & Castro, E. (2019). Optimization of oleuropein and luteolin-7-O-glucoside extraction from olive leaves by ultrasound-assisted technology. Energies, 12(13), 2486.
  • Dal, O., Şengün, D., Yüksel-Özşen, A. (2020). Ultrasound assisted extraction for the recovery of phenolic compounds from waste hazelnut shell. Environmental Research and Technology, 3(3), 135–146.
  • Azmin, S. N. H. M., Manan, Z. A., Alwi, S. R. W., Chua, L. S., Mustaffa, A. A., & Yunus, N. A. (2016). Herbal processing and extraction technologies. Separation and Purification Reviews, 45(4), 305–320.
  • Luque de Castro, M. D., & Priego-Capote, F. (2010). Soxhlet extraction: Past and present panacea. Journal of Chromatography A, 1217(16), 2383–2389.
  • Japón Luján, R., Priego Capote, F., Marinas, A., & Luque De Castro, M. D. (2008). Liquid chromatography/triple quadrupole tandem mass spectrometry with multiple reaction monitoring for optimal selection of transitions to evaluate nutraceuticals from olive-tree materials. Rapid Communications in Mass Spectrometry, 22(6), 855–864.
  • Xynos, N., Papaefstathiou, G., Gikas, E., Argyropoulou, A., Aligiannis, N., & Skaltsounis, A.L. (2014). Design optimization study of the extraction of olive leaves performed with pressurized liquid extraction using response surface methodology. Separation and Purification Technology, 122, 323–330.
  • Zun-qiu, W. U., Gui-zhou, Y. U. E., Qing-ping, Z. H. U., You-jun, J., & Kai-yu, T. (2015). Purification, Dynamic Changes and Antioxidant Activities of Oleuropein in Olive (Olea Europaea L.) Leaves. Journal of Food Biochemistry, 39(5), 566–574.
  • Lamprou, G. K., Vlysidis, A., Tzathas, K., & Vlyssides, A. G. (2020). Statistical optimization and kinetic analysis of the extraction of phenolic compounds from olive leaves. Journal of Chemical Technology & Biotechnology, 95(2), 457–465.
  • Cho, W.Y., Kim, D.H., Lee, H.J., Yeon, S.J., & Lee, C.H. (2020). Evaluation of Effect of Extraction Solvent on Selected Properties of Olive Leaf Extract. Journal of Food Quality, 2020.
  • Kırbaşlar, Ş.İ., & Şahin, S. (2021). Recovery of Bioactive Ingredients from Biowaste of Olive Tree (Olea europaea) using Microwave-Assisted Extraction: A Comparative Study. Biomass Conversion & Biorefinery,1–13.
  • Ozturk, M., Altay, V., Gönenç, T. M., Unal, B. T., Efe, R., Akçiçek, E., & Bukhari, A. (2021). An Overview of Olive Cultivation in Turkey: Botanical Features, Eco-Physiology and Phytochemical Aspects. Agronomy, 11(2), 295.
  • Le Floch, F., Tena, M. T., Ríos, A., & Valcárcel, M. (1998). Supercritical fluid extraction of phenol compounds from olive leaves. Talanta, 46(5), 1123–1130.
  • Lee, M. R., Lin, C. Y., Li, Z. G., & Tsai, T. F. (2006). Simultaneous analysis of antioxidants and preservatives in cosmetics by supercritical fluid extraction combined with liquid chromatography-mass spectrometry. Journal of Chromatography A, 1120(1–2), 244–251.
  • Demirkaya, E., Dal, O., & Yüksel, A. (2019). Liquefaction of waste hazelnut shell by using sub-and supercritical solvents as a reaction medium. The Journal of Supercritical Fluids, 150, 11–20.
  • Mazaheri, H., Lee, K. T., Bhatia, S., & Mohamed, A. R. (2010). Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil: effect of solvents. Bioresource Technology, 101(19), 7641–7647.
  • Şahin, S., Bilgin, M., & Dramur, M. U. (2011). Investigation of oleuropein content in olive leaf extract obtained by supercritical fluid extraction and soxhlet methods. Separation Science and Technology, 46(11), 1829–1837.
  • Garcia-Castello, E. M., Rodriguez-Lopez, A. D., Mayor, L., Ballesteros, R., Conidi, C., & Cassano, A. (2015). Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT-Food Science and Technology, 64(2), 1114–1122.
  • Xie, J.-H., Dong, C., Nie, S.-P., Li, F., Wang, Z.-J., Shen, M.-Y., & Xie, M.-Y. (2015). Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves. Food Chemistry, 186, 97–105.
  • Medina-Torres, N., Ayora-Talavera, T., Espinosa-Andrews, H., Sánchez-Contreras, A., & Pacheco, N. (2017). Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy, 7(3), 47.
  • Nagy, B., & Simándi, B. (2008). Effects of particle size distribution, moisture content, and initial oil content on the supercritical fluid extraction of paprika. The Journal of Supercritical Fluids, 46(3), 293–298.
  • Irakli, M., Chatzopoulou, P., & Ekateriniadou, L. (2018). Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and fl avonoids from olive leaves and evaluation of its antioxidant activities. Industrial Crops & Products, 124, 382–388.
  • 44. Xie, P., Huang, L., Zhang, C., & You, F. (2013). Reduced pressure extraction of oleuropein from olive leaves ( Olea europaea L .) with ultrasound. Food and Bioproducts Processing, 93, 29–38.
Yıl 2023, Cilt: 7 Sayı: 2, 116 - 124, 15.04.2023
https://doi.org/10.31127/tuje.1058500

Öz

Kaynakça

  • Chikezie, P. C., Ibegbulem, C. O., & Mbagwu, F. N. (2015). Bioactive Principles from Medicinal Plants. Research Journal of Phytochemistry, 9(3), 88–115.
  • Del, D., Rodriguez-mateos, A., Spencer, J. P. E., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antioxidants & Redox Signaling, 18(14),1818–1892.
  • Bayraktar, O., Köse, M. D., & Baspinar, Y. (2019). Development of olive leaf extract loaded fibroin microparticles by spray drying. The Open Drug Discovery Journal, 13, 39–45.
  • Wissam, Z., Ali, A., & Rama, H. (2016). Optimization of extraction conditions for the recovery of phenolic compounds and antioxidants from Syrian olive leaves. Journal of Pharmacognosy and Phytochemistry, 5(5), 390.
  • Nenadis, N., Vervoort, J., Boeren, S., & Tsimidou, M. Z. (2007). Syringa oblata Lindl var. alba as a source of oleuropein and related compounds. Journal of the Science of Food and Agriculture, 87(1), 160–166.
  • Omar, S. H. (2010). Oleuropein in olive and its pharmacological effects. Scientia Pharmaceutica, 78(2), 133–154.
  • Soler-Rivas, C., Espiń, J. C., & Wichers, H. J. (2000). Oleuropein and related compounds. Journal of the Science of Food and Agriculture, 80(7), 1013–1023.
  • Puerta, R. De, Gutierrez, V. R., & Hoult, J. R. S. (1999). Inhibition of Leukocyte 5-Lipoxygenase by Phenolics from Virgin Olive Oil. Biochemical Pharmacology, 57(4), 445–449.
  • Bisignano, G., Tomaino, A., Cascio, R. L. O., & Crisafi, G. (1999). On the In-vitro Antimicrobial Activity of Oleuropein and Hydroxytyrosol. Journal of Pharmacy and Pharmacology, 51(8), 971–974.
  • Maria, P., Marino, A., Saija, A., Uccella, N., & Bisignano, G. (2002). In vitro antimycoplasmal activity of oleuropein. International Journal of Antimicrobial Agents, 20(4), 293–296.
  • Lee-huang, S., Lin, P., Zhang, D., Wook, J., Bao, J., Sun, Y., Chang, Y., Zhang, J., & Lee, P. (2007). Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol: Part I. Integrase inhibition. Biochemical and Biophysical Research Communications, 354(4), 872–878.
  • Visioli, F., Galli, C., & Galli, G. (2002). Biological activities and metabolic fate of olive oil phenols. European Journal of Lipid Science and Technology, 104(9-10), 677–684.
  • Visioli, F., Bogani, P., & Galli, C. (2006). Healthful Properties of Olive Oil Minor Components. Olive Oil (Second Edition) Chemistry and Technology, Editor(s): Dimitrios Boskou, AOCS Press, 173–190.
  • Ghelichkhani, G., Modaresi, M. H., Rashidi, L., Shariatifar, N., Homapour, M., & Arabameri, M. (2019). Effect of the spray and freeze dryers on the bioactive compounds of olive leaf aqueous extract by chemometrics of HCA and PCA. Journal of Food Measurement and Characterization, 13(4), 2751–2763.
  • Piacentini, E., Mazzei, R., Bazzarelli, F., Ranieri, G., Poerio, T., & Giorno, L. (2019). Oleuropein aglycone production and formulation by integrated membrane process. Industrial & Engineering Chemistry Research, 58(36), 16813–16822.
  • da Rosa, G. S., Vanga, S. K., Gariepy, Y., & Raghavan, V. (2019). Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Olea europaea L.). Innovative Food Science & Emerging Technologies, 58, 102234.
  • Naleini, N., Rahimi, M., & Heydari, R. (2015). Oleuropein extraction using microfluidic system. Chemical Engineering and Processing: Process Intensification, 92, 1–6.
  • Jaski, J. M., Barão, C. E., Liao, L. M., Pinto, V. S., Zanoelo, E. F., & Cardozo-Filho, L. (2019). β-Cyclodextrin complexation of extracts of olive leaves obtained by pressurized liquid extraction. Industrial Crops and Products, 129, 662–672.
  • Yateem, H., Afaneh, I., & Al-Rimawi, F. (2014). Optimum conditions for oleuropein extraction from olive leaves. Applied Science and Technology Magazine, Corpus ID: 212474866
  • Yasemi, M., Heydarinasab, A., Rahimi, M., & Ardjmand, M. (2017). Microchannels effective method for the extraction of oleuropein compared with conventional methods. Journal of Chemistry, 2017.
  • Baldino, L., Della Porta, G., Osseo, L. S., Reverchon, E., & Adami, R. (2018). Concentrated oleuropein powder from olive leaves using alcoholic extraction and supercritical CO2 assisted extraction. The Journal of Supercritical Fluids, 133, 65–69.
  • del Mar Contreras, M., Lama-Muñoz, A., Espínola, F., Moya, M., Romero, I., & Castro, E. (2020). Valorization of olive mill leaves through ultrasound-assisted extraction. Food Chemistry, 314, 126218.
  • Lama-Muñoz, A., Contreras, M. del M., Espínola, F., Moya, M., Romero, I., & Castro, E. (2019). Optimization of oleuropein and luteolin-7-O-glucoside extraction from olive leaves by ultrasound-assisted technology. Energies, 12(13), 2486.
  • Dal, O., Şengün, D., Yüksel-Özşen, A. (2020). Ultrasound assisted extraction for the recovery of phenolic compounds from waste hazelnut shell. Environmental Research and Technology, 3(3), 135–146.
  • Azmin, S. N. H. M., Manan, Z. A., Alwi, S. R. W., Chua, L. S., Mustaffa, A. A., & Yunus, N. A. (2016). Herbal processing and extraction technologies. Separation and Purification Reviews, 45(4), 305–320.
  • Luque de Castro, M. D., & Priego-Capote, F. (2010). Soxhlet extraction: Past and present panacea. Journal of Chromatography A, 1217(16), 2383–2389.
  • Japón Luján, R., Priego Capote, F., Marinas, A., & Luque De Castro, M. D. (2008). Liquid chromatography/triple quadrupole tandem mass spectrometry with multiple reaction monitoring for optimal selection of transitions to evaluate nutraceuticals from olive-tree materials. Rapid Communications in Mass Spectrometry, 22(6), 855–864.
  • Xynos, N., Papaefstathiou, G., Gikas, E., Argyropoulou, A., Aligiannis, N., & Skaltsounis, A.L. (2014). Design optimization study of the extraction of olive leaves performed with pressurized liquid extraction using response surface methodology. Separation and Purification Technology, 122, 323–330.
  • Zun-qiu, W. U., Gui-zhou, Y. U. E., Qing-ping, Z. H. U., You-jun, J., & Kai-yu, T. (2015). Purification, Dynamic Changes and Antioxidant Activities of Oleuropein in Olive (Olea Europaea L.) Leaves. Journal of Food Biochemistry, 39(5), 566–574.
  • Lamprou, G. K., Vlysidis, A., Tzathas, K., & Vlyssides, A. G. (2020). Statistical optimization and kinetic analysis of the extraction of phenolic compounds from olive leaves. Journal of Chemical Technology & Biotechnology, 95(2), 457–465.
  • Cho, W.Y., Kim, D.H., Lee, H.J., Yeon, S.J., & Lee, C.H. (2020). Evaluation of Effect of Extraction Solvent on Selected Properties of Olive Leaf Extract. Journal of Food Quality, 2020.
  • Kırbaşlar, Ş.İ., & Şahin, S. (2021). Recovery of Bioactive Ingredients from Biowaste of Olive Tree (Olea europaea) using Microwave-Assisted Extraction: A Comparative Study. Biomass Conversion & Biorefinery,1–13.
  • Ozturk, M., Altay, V., Gönenç, T. M., Unal, B. T., Efe, R., Akçiçek, E., & Bukhari, A. (2021). An Overview of Olive Cultivation in Turkey: Botanical Features, Eco-Physiology and Phytochemical Aspects. Agronomy, 11(2), 295.
  • Le Floch, F., Tena, M. T., Ríos, A., & Valcárcel, M. (1998). Supercritical fluid extraction of phenol compounds from olive leaves. Talanta, 46(5), 1123–1130.
  • Lee, M. R., Lin, C. Y., Li, Z. G., & Tsai, T. F. (2006). Simultaneous analysis of antioxidants and preservatives in cosmetics by supercritical fluid extraction combined with liquid chromatography-mass spectrometry. Journal of Chromatography A, 1120(1–2), 244–251.
  • Demirkaya, E., Dal, O., & Yüksel, A. (2019). Liquefaction of waste hazelnut shell by using sub-and supercritical solvents as a reaction medium. The Journal of Supercritical Fluids, 150, 11–20.
  • Mazaheri, H., Lee, K. T., Bhatia, S., & Mohamed, A. R. (2010). Sub/supercritical liquefaction of oil palm fruit press fiber for the production of bio-oil: effect of solvents. Bioresource Technology, 101(19), 7641–7647.
  • Şahin, S., Bilgin, M., & Dramur, M. U. (2011). Investigation of oleuropein content in olive leaf extract obtained by supercritical fluid extraction and soxhlet methods. Separation Science and Technology, 46(11), 1829–1837.
  • Garcia-Castello, E. M., Rodriguez-Lopez, A. D., Mayor, L., Ballesteros, R., Conidi, C., & Cassano, A. (2015). Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT-Food Science and Technology, 64(2), 1114–1122.
  • Xie, J.-H., Dong, C., Nie, S.-P., Li, F., Wang, Z.-J., Shen, M.-Y., & Xie, M.-Y. (2015). Extraction, chemical composition and antioxidant activity of flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja leaves. Food Chemistry, 186, 97–105.
  • Medina-Torres, N., Ayora-Talavera, T., Espinosa-Andrews, H., Sánchez-Contreras, A., & Pacheco, N. (2017). Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy, 7(3), 47.
  • Nagy, B., & Simándi, B. (2008). Effects of particle size distribution, moisture content, and initial oil content on the supercritical fluid extraction of paprika. The Journal of Supercritical Fluids, 46(3), 293–298.
  • Irakli, M., Chatzopoulou, P., & Ekateriniadou, L. (2018). Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and fl avonoids from olive leaves and evaluation of its antioxidant activities. Industrial Crops & Products, 124, 382–388.
  • 44. Xie, P., Huang, L., Zhang, C., & You, F. (2013). Reduced pressure extraction of oleuropein from olive leaves ( Olea europaea L .) with ultrasound. Food and Bioproducts Processing, 93, 29–38.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Yaşar Kemal Recepoğlu 0000-0001-6646-0358

Gülin Gümüşbulut Bu kişi benim 0000-0002-5595-3074

Aslı Yüksel Özşen 0000-0002-9273-2078

Yayımlanma Tarihi 15 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 7 Sayı: 2

Kaynak Göster

APA Recepoğlu, Y. K., Gümüşbulut, G., & Yüksel Özşen, A. (2023). A comparative assessment for efficient oleuropein extraction from olive leaf (Olea europaea L. folium). Turkish Journal of Engineering, 7(2), 116-124. https://doi.org/10.31127/tuje.1058500
AMA Recepoğlu YK, Gümüşbulut G, Yüksel Özşen A. A comparative assessment for efficient oleuropein extraction from olive leaf (Olea europaea L. folium). TUJE. Nisan 2023;7(2):116-124. doi:10.31127/tuje.1058500
Chicago Recepoğlu, Yaşar Kemal, Gülin Gümüşbulut, ve Aslı Yüksel Özşen. “A Comparative Assessment for Efficient Oleuropein Extraction from Olive Leaf (Olea Europaea L. Folium)”. Turkish Journal of Engineering 7, sy. 2 (Nisan 2023): 116-24. https://doi.org/10.31127/tuje.1058500.
EndNote Recepoğlu YK, Gümüşbulut G, Yüksel Özşen A (01 Nisan 2023) A comparative assessment for efficient oleuropein extraction from olive leaf (Olea europaea L. folium). Turkish Journal of Engineering 7 2 116–124.
IEEE Y. K. Recepoğlu, G. Gümüşbulut, ve A. Yüksel Özşen, “A comparative assessment for efficient oleuropein extraction from olive leaf (Olea europaea L. folium)”, TUJE, c. 7, sy. 2, ss. 116–124, 2023, doi: 10.31127/tuje.1058500.
ISNAD Recepoğlu, Yaşar Kemal vd. “A Comparative Assessment for Efficient Oleuropein Extraction from Olive Leaf (Olea Europaea L. Folium)”. Turkish Journal of Engineering 7/2 (Nisan 2023), 116-124. https://doi.org/10.31127/tuje.1058500.
JAMA Recepoğlu YK, Gümüşbulut G, Yüksel Özşen A. A comparative assessment for efficient oleuropein extraction from olive leaf (Olea europaea L. folium). TUJE. 2023;7:116–124.
MLA Recepoğlu, Yaşar Kemal vd. “A Comparative Assessment for Efficient Oleuropein Extraction from Olive Leaf (Olea Europaea L. Folium)”. Turkish Journal of Engineering, c. 7, sy. 2, 2023, ss. 116-24, doi:10.31127/tuje.1058500.
Vancouver Recepoğlu YK, Gümüşbulut G, Yüksel Özşen A. A comparative assessment for efficient oleuropein extraction from olive leaf (Olea europaea L. folium). TUJE. 2023;7(2):116-24.
Flag Counter