Comparative study on obtaining paper and thread-based microfluidics via simple fabrication techniques
Year 2024,
Volume: 8 Issue: 3, 551 - 562, 28.07.2024
Nagihan Okutan Arslan
,
Ragheid Mohammed Helmy Atta
,
Levent Trabzon
Abstract
Microfluidic paper-based analytical devices (µPADs) and microfluidic thread-based analytical devices (µTADs) have recently been introduced as a new class of on-site monitoring devices. Creating hydrophilic channels with hydrophobic barriers on papers/threads produces µPADs/µTADs. Fabrication is a crucial step in creating durable µPADs/µTADs that can withstand various liquids and impact the device's performance. Fabrication materials with distinct physicochemical properties allow microfluidic systems with sophisticated functions to be customized for specific applications. We present flexible and low-cost fabrication methods for µPAD and µTAD platforms. Platform designs and fabrications were implemented using a trial-and-error method for various designs with varying parameters. All production methods presented in the method section were used in µPAD production. For comparison studies, only the dipping method was used in µTAD production due to its ease of application. In this study, we tried to reveal the strengths and weaknesses of the production techniques and the resulting microfluidic platforms. A leaching test was performed with water solutions containing red ink. The compatibility of the hydrophobic walls of the platforms was tested with several solvents (isopropanol, methanol, and acetone), deionized (DI) water, and phosphate buffer solution PBS and compared. Patterning paper with polydimethylsiloxane (PDMS), white glue, alkyl ketene dimer (AKD), beeswax, and paraffin are much more flexible and simpler than traditional photoresist-based fabrications. The advantages and disadvantages of fabrication techniques; solvent resistance and wicking behaviors of platforms were discussed in the last part. The fabricated microfluidic platforms can be functionalized and used in many areas where analytical tests are applied. Studies on diversifying channel geometries and increasing resolution need to be continued. It should be investigated which devices can be used to obtain qualitative and quantitative results. To make simple and cheap production techniques suitable for mass production, studies should be carried out from different branches.
Supporting Institution
TUBITAK and ITU BAP
Project Number
TUBITAK 218M528, ITU BAP 40707
Thanks
This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Project No: 218M528 and partially by Istanbul Technical University – Scientific Research Projects Unit under the BAP project number 40707. Authors are thankful for supports.
References
- Aralekallu, S., Boddula, R., & Singh, V. (2023). Development of glass-based microfluidic devices: A review on its fabrication and biologic applications. Materials & Design, 225, 111517.
https://doi.org/10.1016/j.matdes.2022.111517
- Gao, B., Li, X., Yang, Y., Chu, J., & He, B. (2019). Emerging paper microfluidic devices. Analyst, 144, 6497–6511.
https://0-doi-org/10.1039/C9AN01275C
- Mousaabadi, K.Z., Vandishi, Z.T., Kermani, M., Arab, N., & Ensafi, A.A. (2023). Recent developments toward microfluidic point-of-care diagnostic sensors for viral infections. Trends in Analytical Chemistry, 169, 117361. https://doi.org/10.1016/j.trac.2023.117361
- Shi, L., Li, Y., Jia, C., Shan, J., Wang, S., Liu, S., Sun, J., Zhang, D., Ji, Y., & Wang, J. (2023). An overview of fluorescent microfluidics into revealing the mystery of food safety analysis: Mechanisms and recent applications. Trends in Food Science & Technology, 138, 100–115.
https://doi.org/10.1016/j.tifs.2023.05.016
- Li, T., Yang, N., Pan, X., Zhang, X., & Xu, L. (2024). A portable microfluidic photometric detection method based on enzyme linked immunoscatter enhancement. Biosensors and Bioelectronics, 244, 115794. https://doi.org/10.1016/j.bios.2023.115794
- Thakur, R., & Fridman, G. Y. (2022). Low cost, ease-of-access fabrication of microfluidic devices using wet paper molds. Micromachines (Basel), 13(9), 1408. https://doi.org/10.3390/mi13091408
- Hassan, M. M., Yi, X., Zareef, M., Li, H., & Chen, Q. (2023). Recent advancements in optical, electrochemical, and photoelectrochemical transducer-based microfluidic devices for pesticide and mycotoxins in food and water. Trends in Food Science & Technology, 142, 104230.
https://doi.org/10.1016/j.tifs.2023.104230
- Lu, S.-Y., Tseng, C.-C., Yu, C.-X., Chen, T.-L., Huang, K.-H., Fu, L.-M., & Wu, P.-H. (2024). Rapid microfluidic fluorescence detection platform for determination of whole blood sodium. Sensors & Actuators: B. Chemical, 400, 134839.
https://doi.org/10.1016/j.snb.2023.134839
- Pou, K.R.J., Raghavan, V., & Packirisamy, M. (2022). Microfluidics in smart packaging of foods. Food Research International, 161, 111873.
https://doi.org/10.1016/j.foodres.2022.111873
- Berthier, E., Dostie, A.M., Lee, U.N., Berthier, J., & Theberge, A.B. (2019). Open Microfluidic Capillary Systems. Anal Chemistry, 91(14), 8739–8750. https://doi.org/10.1021/acs.analchem.9b01429
- Zhang, Y., Yu, Y., Yang, X., Yuan, X., & Zhang, J. (2024). Pb(II) inhibits CRISPR/Cas12a activation and application for paper-based microfluidic biosensor assisted by smartphone. Sensors & Actuators: B. Chemical, 398, 134732.
https://doi.org/10.1016/j.snb.2023.134732
- Nishat, S., Jafry, A. T., Martinez, A. W., & Awan, F. R. (2021). Paper-based microfluidics: Simplified fabrication and assay methods. Sensors and Actuators: B. Chemical, 336, 129681.
https://doi.org/10.1016/j.snb.2021.129681
- Agustini, D., Caetano, F. R., Quero, R. F., da Silva, J. A. F., Bergamini, M. F., Marcolino-Junior, L. H., & de Jesus, D. P. (2021). Microfluidic devices based on textile threads for analytical applications: state of the art and prospects. Anal. Methods, 13, 4830. https://0-doi-org/10.1039/D1AY01337H
- Martinez, A.W., Phillips, S.T., Butte, M.J., & Whitesides, G.M. (2007). Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angewandte Chemie International Edition, 46(8), 1318-20. https://doi.org/10.1002/anie.200603817
- Teymoori, M. & Yalçınkaya, A.D. (2023). A low-cost microwave metamaterial-inspired sensing platform for quantitative paper microfluidic analytical devices. Sensors & Actuators: A. Physical, 363, 114684. https://doi.org/10.1016/j.sna.2023.114684
- Sanjayan, C. G., Ravikumar, C. H., & Balakrishna, R. G. (2023). Perovskite QD-based paper microfluidic device for simultaneous detection of lung cancer biomarkers – Carcinoembryonic antigen and neuron-specific enolase. Chemical Engineering Journal, 464, 142581. https://doi.org/10.1016/j.cej.2023.142581
- Saiboh, T., Malahom, N., Prakobjij, A., Seebunrueng, K., Amatatongchai, M., Chairam, S., Sameenoi, Y., & Jarujamrus, P. (2023). Visual detection of formalin in food samples by using a microfluidic thread-based analytical device. Microchemical Journal, 190, 108685. https://doi.org/10.1016/j.microc.2023.108685
- Hamidon, N. N., Hong, Y., Salentijn, G. IJ., & Verpoorte, E. (2018). Water-based alkyl ketene dimer ink for user-friendly patterning in paper microfluidics. Analytica Chimica Acta, 1000, 180-190.
https://doi.org/10.1016/j.aca.2017.10.040
- Derakhshani, M., Jahanshahi, A., & Ghourchian, H. (2023). Addressing the sample volume dependency of the colorimetric glucose measurement on microfluidic paper-based and thread/paper-based analytical devices using a novel low-cost analytical viewpoint. Microchemical Journal, 195, 109545. https://doi.org/10.1016/j.microc.2023.109545
- Hussain, G. H., Jafry, A. T., Malik, S., Shah, S. F., Nishat, S., & Awan, F. R. (2023). Multifunctional rotational active valve for flow control in paper-based microfluidic devices. Sensors & Actuators: B. Chemical, 378, 133142.
https://doi.org/10.1016/j.snb.2022.133142
- Müller, R. H. & Clegg, D. L. (1949). Automatic paper chromatography. Analytcial Chemistry, 21, (9), 1123-1125. https://pubs.acs.org/doi/abs/10.1021/ac60033a032
- Sarabi, M., Yigci, D., Alseed, M. M., Mathyk, B. A., Ata, B., Halicigil, C., & Tasoğlu, S. (2022). Disposable paper-based microfluidics for fertility testing. iScience, 25, 104986. https://doi.org/10.1016/j.isci.2022.104986
- Kulkarni, M. B., Ayachit, N. H., Aminabhavi, T. M., & Pogue, B. W. (2023). Recent advances in microfluidics-based paper analytical devices (μPADs) for biochemical sensors: From fabrication to detection techniques. Biochemical Engineering Journal, 198, 109027.
https://doi.org/10.1016/j.bej.2023.109027
- Yuan, M., Li, C., Zheng, Y., Cao, H., Ye, T., Wu, X., Hao, L., Yin, F., Yu, J., & Xu, F. (2024). A portable multi-channel fluorescent paper-based microfluidic chip based on smartphone imaging for simultaneous detection of four heavy metals. Talanta, 266, 125112. https://doi.org/10.1016/j.talanta.2023.125112
- Çelik, M. (2022). An experimental study of the performance of a low-cost paper-based membraneless direct hydrogen peroxide fuel cell. Turkish Journal of Engineering, 6(2), 161-165. https://doi.org/10.31127/tuje.891626
- Klemm, D., Heublein, B., Fink, H. -P., & Bohn, A. (2005). Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition, 44, 3358 – 3393.
https://0-doi-org/10.1002/anie.200460587
- Pelton, R. (2009). Bioactive paper provides a low-cost platform for diagnostics. Trends Analyt Chemistry, 28(8), 925–942. https://doi.org/10.1016/j.trac.2009.05.005
- Ray, R., Prabhu, A., Prasad D., Garlapati, V.K., Amnabhavi, M., Mani, N.K., & Simal-Gandara, J. (2022). Paper-based microfluidic devices for food adulterants: Cost-effective technological monitoring systems. Food Chemistry, 390, 133173. https://doi.org/10.1016/j.foodchem.2022.133173
- Li, X., Ballerini, D.R., & Shen, W. (2012). A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics, 6(1), 11301-1130113. https://doi.org/10.1063/1.3687398
- Guan, H., Du, S., Han, B., Zhang, Q., & Wang, D. (2023). A rapid and sensitive smartphone colorimetric sensor for detection of ascorbic acid in food using the nanozyme paper-based microfluidic chip. LWT - Food Science and Technology, 184, 115043. https://doi.org/10.1016/j.lwt.2023.115043
- Xia, Y., Si, J., & Li, Z. (2016). Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosensors and Bioelectronics, 77, 774–789. http://dx.doi.org/10.1016/j.bios.2015.10.032
- Pantoja, R., Nagarah, J. M., Starace, D. M., Melosh, N. A., Blunck, R., Bezanilla, F., & Heath, J. R. (2004). Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics. Biosens Bioelectronics, 20, 509–517. https://doi.org/10.1016/j.bios.2004.02.020
- Chung, S., Loh, A., Jennings, C. M., Sosnowski, K., Ha, S. Y., Yim, H., & Jeong-Yeol, Y. (2023). Capillary flow velocity profile analysis on paper-based microfluidic chips for screening oil types using machine learning. Journal of Hazardous Materials, 447, 130806. https://doi.org/10.1016/j.jhazmat.2023.130806
- Zhang, Q., Feng, S., Lin, L., Mao, S., & Lin, J.-M. (2021). Emerging open microfluidics for cell manipulation. Chemical Society Reviews, 50, 5333–5348.
https://doi.org/10.1039/D0CS01516D
- Chaikan, P., Udnan, Y., Sananmuang, R., Ampiah-Bonney, R.J., & Chaiyasith, W.C. (2020). A low-cost microfluidic paper-based analytical device (μPAD) with column chromatography preconcentration for the determination of paraquat in vegetable samples. Microchemical Journal, 159, 105355. https://doi.org/10.1016/j.microc.2020.105355
- Nery, E. & Kubota, L. T. (2013). Sensing approaches on paper-based devices: a review. Anal Bioanal Chemistry, 405, 7573–7595. https://0-doi-org/10.1007/s00216-013-6911-4
- Cardoso, T. M. G., de Souza, F. R., Garcia, P. T., Rabelo, D., Henry, C. S., & Coltro, W. K. T. (2017). Versatile fabrication of paper-based microfluidic devices with high chemical resistance using scholar glue and magnetic masks. Analytica Chimica Acta, 974, 63-68. http://dx.doi.org/10.1016/j.aca.2017.03.043
- Silva-Neto, H. A., Arantes, I. V. S., Ferreira, A. L., do Nascimento, G. H. M., Meloni, G. N., de Araujo, W. R., Paixão, T. R. L. C., & Coltro, W. K. T. (2023). Recent advances on paper-based microfluidic devices for bioanalysis. TrAC Trends in Analytical Chemistry, 158, 116893.
https://doi.org/10.1016/j.trac.2022.116893
- Safiabadi Tali, S. H., Hajimiri, H., Sadiq, Z., & Jahanshahi-Anbuhi, S. (2023). Engineered detection zone to enhance color uniformity on paper microfluidics fabricated via Parafilm®-heating-laser-cutting. Sensors and Actuators B: Chemical, 380, 133324. https://doi.org/10.1016/j.snb.2023.133324
- Stefano, J. S., Orzari, L. O., Silva-Neto, H. A., de Ataìde, V. N., Medes, L. F., & Coltro, W. K. T. (2022). Different approaches for fabrication of low-cost electrochemical sensors. Current Opinion in Electrochemistry, 32, 100893.
https://doi.org/10.1016/j.coelec.2021.100893
- Liao, X., Zhang, Y., Zhang, Q., Zhou, J., Ding, T., & Feng, J. (2023). Advancing point-of-care microbial pathogens detection by material-functionalized microfluidic systems. Trends in Food Science & Technology, 135, 115–130.
https://doi.org/10.1016/j.tifs.2023.03.022
- Tan, W., Powles, E., Zhang, L., & Shen, W. (2021). Go with the capillary flow. Simple thread-based microfluidics. Sensors and Actuators: B. Chemical, 334, 129670.
https://doi.org/10.1016/j.snb.2021.129670
- Baysal, G., Önder, S., Göcek, İ., Trabzon, L., Kızıl, H., Kök, F. N., & Kayaoğlu, B. K. (2015). Design and fabrication of a new nonwoven-textile-based platform for biosensor construction. Sensors and Actuators B, 208, 475–484.
https://dx.doi.org/10.1016/j.snb.2014.11.042
- Chen, L., Ghiasvand, A., & Paull, B. (2023). Applications of thread-based microfluidics: Approaches and options for detection. Trends in Analytical Chemistry, 161, 117001.
https://doi.org/10.1016/j.trac.2023.117001
- Mesquita, P., Gong, L., & Lin, Y. (2022). Low-cost microfluidics: Towards affordable environmental monitoring and assessment. Frontiers in Lab on a Chip Technologies, 1, 1074009.
https://doi.org/10.3389/frlct.2022.1074009
- Tzianni, E. I., Sakkas, V. A., & Prodromidis, M. I. (2024). Wax screen-printable ink for massive fabrication of negligible-to-nil cost fabric-based microfluidic (bio)sensing devices for colorimetric analysis of sweat. Talanta, 269, 125475.
https://doi.org/10.1016/j.talanta.2023.125475
- Bruzewicz, D. A., Reches, M., & Whitesides, G. M. (2008). Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper. Anal. Chemistry, 80, 3387-3392. https://0-doi-org/10.1021/ac702605a
- Li, X., Tian, J., Garnier, G., & Shen, W. (2010). Fabrication of paper-based microfluidic sensors by printing. Colloids and Surfaces B: Biointerfaces, 76, 564–570. https://doi.org/10.1016/j.colsurfb.2009.12.023
- Li., X., Tian, J., Nguyen, T., & Shen, W. (2008). Paper-Based Microfluidic Devices by Plasma Treatment. Anal Chemistry, 2008, 80, 9131–9134. https://doi.org/10.1021/ac801729t
- Songjaroen, T., Dungchai, W., Chailapakul, O., & Laiwattanapaisal, W. (2011). Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta, 85, 2587–2593. https://dx.doi.org/10.1016/j.talanta.2011.08.024
- Bandopadhyay, A. A., & Das, P. K. (2023). Paper based microfluidic devices: a review of fabrication techniques and applications. The European Physical Journal Special Topics, 232(6), 781-815. https://doi.org/10.1140/epjs/s11734-022-00727-y
- Yamada, K., Henares, T.G., Suzuki, K., & Citterio, D. (2015). Paper-Based Inkjet-Printed Microfluidic Analytical Devices. Angewandte Chemie International Edition., 54, 5294–5310. https://0-doi-org/10.1002/anie.201411508
- Levine, L. M. & Campbell, T. (2007). Combining Additive and Subtractive Techniques in the Design and Fabrication of Microfluidic Devices. NSTI Nanotechnology Conference and Trade Show., 3, 385.
- Roller, R. M. & Lieberman, M. (2023). Beyond wax printing: The future of paper analytical device fabrication. Sensors and Actuators: B. Chemical, 392, 134059. https://doi.org/10.1016/j.snb.2023.134059
- Trinh, K. T. L., Chae, W. R., & Lee, N. Y. (2022). Recent advances in the fabrication strategies of paper-based microfluidic devices for rapid detection of bacteria and viruses. Microchemical Journal, 180, 107548. https://doi.org/10.1016/j.microc.2022.107548
- Coltro, W. K. T., Chao-Min, C., Carrilho, E., & de Jesus, D. P. (2014). Recent advances in low-cost microfluidicplatforms for diagnostic applications. Electrophoresis, 35, 2309–2324. https://0-doi-org/10.1002/elps.201400006
- Li, Z., Liu, H., He, X., Xu, F., & Li, F. (2018). Pen-on-paper strategies for point-of-care testing of human health. TrAC Trends in Analytical Chemistry, 108, 50-64. https://doi.org/10.1016/j.trac.2018.08.010
- Lee, J. N., Park, C., & Whitesides, G. M. (2003). Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices. Anal Chemistry, 75, 6544-6554. https://0-doi-org /10.1021/ac0346712
- Oyola-Reynoso, S., Heim, A. P., Halbertsma-Black, J., Zhao, C., Tevis, I. D., Çınar, S., Cademartiri, R., Liu, X., Bloch, J.-F., & Thuo, M. M. (2015). Draw your assay: Fabrication of low-cost paper-based diagnostic and multi-well test zones by drawing on a paper. Talanta, 144, 289–293.
http://dx.doi.org/10.1016/j.talanta.2015.06.018
- Lu, Y., Shi, W., Jiang, L., Qin, J, & Lin, B. (2009). Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis, 30, 1497–1500.
https://0-doi-org/10.1002/elps.200800563
- Walia, S., Bhatnagar, I., Liu, J., Mitra, S.K., & Asthana, A. (2021). A novel method for fabrication of paper-based microfluidic devices using BSA-ink. International Journal of Biological Macromolecules, 193, 1617–1622.
https://doi.org/10.1016/j.ijbiomac.2021.10.224
- Nuchtavorn, N. & Macka, M. (2016). A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (mPADs) using technical drawing pens and in-house formulated aqueous inks. Analytica Chimica Acta, 919, 70-77. http://dx.doi.org/10.1016/j.aca.2016.03.018
- Sousa, L. R., Duarte, L. C., & Coltro, W. K. T. (2020). Instrument-free fabrication of microfluidic paper-based analytical devices through 3D pen drawing. Sensors & Actuators: B. Chemical, 312, 128018. https://doi.org/10.1016/j.snb.2020.128018
- Abe, K., Suzuki, K., & Ctterio, D. (2008). Inkjet-Printed Microfluidic Multianalyte Chemical Sensing Paper. Anal Chemistry, 80,6928–6934. https://0-doi-org/10.1021/ac800604v
- Gassend, V., Hauf, C. R., & Chen, J. (2022). Research and Applications of Inkjet Printing for OLED Mass Production. SID Symposium Digest of Technical Papers, 53, 1, 398-401.
https://0-doi-org/10.1002/sdtp.15505
- Waasdorp, R., van den Heuvel, O., Versluis, F., Hajee, B., & Ghatkesar, M. K. (2018). Accessing individual 75-micron diameter nozzles of a desktop inkjet printer to dispense picoliter droplets on demand. RSC Advances, 18, 8(27), 14765–14774.
https://doi.org/10.1039%2Fc8ra00756j
- Espinosa, A., Diaz, J., Vazquez, E., Acosta, L., Santago, A., & Cunci, L. (2022). Fabrication of paper-based microfluidic devices using a 3D printer and a commercially-available wax filament. Talanta Open, 6, 100142.
https://doi.org/10.1016/j.talo.2022.100142
- Ghosh, R., Gopalakrishnan, S., Savitha, R., Renganathan, T., & Pushpavanam, S. (2019). Fabrication of laser printed microfluidic paper-based analytical devices (LP-µPADs) for point-of-care applications. Scientific Reports, 9, 7896. https://doi.org/10.1038%2Fs41598-019-44455-1
- Carrilho, E., Martinez, A. W., & Whitesides, G. M. (2009). Understanding wax printing: A simple micropatterning process for paper-based microfluidics. Anal Chemistry, 81, 16, 7091–7095. https://doi.org/10.1021/ac901071p
- Zhan, Z., An, J., Wei, Y., Tran, V. T., & Du, H. (2017). Inkjet-printed optoelectronics. Nanoscale, 9, 965–993. https://0-doi-org/10.1039/C6NR08220C
- Singh, B. M., Haverinen, H. M., Dhagat, P., & Jabbour, G. E. (2010). Inkjet Printing—Process and Its Applications. Advanced Materials, 22, 673–685. https://0-doi-org/10.1002/adma.200901141
- Mettakoonpitak, J., Khongsoun, K., Wongwan, N., kaewbutdee, S., Siripinyanond, A., Kuharuk, A., & Henry, C. S. (2021). Simple biodegradable plastic screen-printing for microfluidic paper-based analytical devices. Sensors and Actuators B: Chemical, 331, 15, 129463.
https://doi.org/10.1016/j.snb.2021.129463
- He, Y., Wu, Y., Fu, J. Z., & Wu, W. B. (2015). Fabrication of paper-based microfluidic analysis devices: a review. RSC Advances, 5, 78109–78127. https://0-doi-org/10.1039/C5RA09188H
- Chitnis, G., Ding, Z., Chang, C. L., Savran, C. A., & Ziaie, B. (2011). Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip, 11, 1161–1165.
https://0-doi-org/10.1039/C0LC00512F
- Tong, X., Ga, L., Zhao, R., & Ai, J. (2021). Research progress on the applications of paper chips. RSC Advances, 11(15), 8793–8820.
https://doi.org/10.1039%2Fd0ra10470a
- Cate, D. M., Adkins, J. A., Mettakoonpitak, J., & Henry, C. S. (2015). Recent Developments in Paper-Based Microfluidic Devices. Anal Chemistry, 87, 19−41. https://doi.org/10.1021/ac503968p
- Hong, J., Ye, X., & Zhang, Y.-H. (2007). Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir, 23, 12535-12540.
https://0-doi-org/10.1021/la7025686
- Kolliopoulos, P. & Kumar, S. (2021). Capillary flow of liquids in open microchannels: overview and recent advances. npj Microgravity 7, 51, 9242. https://doi.org/10.1038/s41526-021-00180-6
- Casavant, B. P., Berthier, E., Theberge, A. B., Berthier, J., Montanez-Sauri, S. I., Bischel, L. L., Brakke, K., Hedman, C. J., Bushman, W., Keller, N. P., & Beebe, D. J. (2013). Suspended microfluidics. Proceedings of the National Academy of Sciences, 18, 110(25), 10111-10116. https://doi.org/10.1073%2Fpnas.1302566110
- Xian, Z., Dai, P., Su, W., Sun, C., Liu, L., You, H., & Liu, Y. (2023). A novel microfuidics PMMA/paper hybrid bioimmunosensor for laser-induced fuorescence detection in the determination of alpha-fetoprotein from serum. Microchemical Journal, 195, 109476. https://doi.org/10.1016/j.microc.2023.109476
- Maejima, K., Tomikawa, S., Suzuki, K., & Citterio, D. (2013). Inkjet printing: an integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Advances, 3, 9258-9263. https://doi.org/10.1039/C3RA40828K
- Boylu, M. A., & Ceyhan, U. Controlling the Motion of Interfaces in Capillary Channels with Non-uniform Surface Wettability. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 25(75), 675-691.
https://doi.org/10.21205/deufmd.2023257513
- Janiszewska, N., Rackowska, J., Budkowski, A., Gajos, K., Stetsyshyn, Y., Michalik, M., & Awsiuk, K. (2020). Dewetting of Polymer Films Controlled by Protein Adsorption. Langmuir, 36, 11817−11828. https://doi.org/10.1021/acs.langmuir.0c01718
- Berthier, J., Gosselin, D., Pham, A., Delapierre, G., Belgacem, N., & Chaussy, D. (2016). Capillary Flow Resistors: Local and Global Resistors. Langmuir, 32, 3, 651-928. https://doi.org/10.1021/acs.langmuir.5b02090
- Berthier, J., Brakke, K.A., Gosselin, D., Berthier, E., & Navarro, F. (2017). Thread-based microfluidics: Flow patterns in homogeneous and heterogeneous microfiber bundles. Medical Engineering and Physics, 48, 55–61.
https://doi.org/10.1016/j.medengphy.2017.08.004
- Zheng, Q., Wang, B., & Guo, Z. (2024). Recent advances in microfluidics by tuning wetting behaviors. Materials Today Physics, 40, 101324. https://doi.org/10.1016/j.mtphys.2023.101324
- Martinez, A. W., Plillips, S. T., Whitesides, G. M., & Carrilho, E. (2010). Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Analytical Chemistry, 82, 1, 3-10.
https://doi.org/10.1021/ac9013989
- Buldum, B. B., & Cagan, S. C. (2017). The optimization of surface roughness of AZ91D magnesium alloy using ANOVA in ball burnishing process. Turkish Journal of Engineering, 1(1), 25-31.
https://doi.org/10.31127/tuje.316860
- Brazaca, L. C., Imamura, A. H., Blasques, R. V., Camargo, J. R., Janegitz, B. C., & Carrilho, E. (2024). The use of biological fluids in microfluidic paper-based analytical devices (μPADs): Recent advances, challenges and future perspectives. Biosensors and Bioelectronics, 246, 115846.
https://doi.org/10.1016/j.bios.2023.115846
- Kepır, Y., Gunoz, A., & Kara, M. (2022). Repairing of damaged composite materials and self-healing composites. Turkish Journal of Engineering, 6(2), 149-155. https://doi.org/10.31127/tuje.866955
Özbek, Ö., Bozkurt, Ö. Y., & Erkliğ, A. (2020). Low velocity impact behaviors of basalt/epoxy reinforced composite laminates with different fiber orientations. Turkish Journal of Engineering, 4(4), 197-202. https://doi.org/10.31127/tuje.644025
- Güngör, A. (2023). The effect of Cumin Black (Nigella Sativa L.) as bio-based filler on chemical, rheological and mechanical properties of epdm composites. Turkish Journal of Engineering, 7(4), 279-285. https://doi.org/10.31127/tuje.1180753
Güler, Ö., gökhan Albayrak, M., Takgün, M., & Güler, S. H. (2017). The investigation on electrical and optical properties of CdO/CNT nanocomposite. Turkish Journal of Engineering, 1(2), 61-65.
https://doi.org/10.31127/tuje.317778
- Koruyucu, A. (2019). Removal of colour pollutions in dye baths with mordants. Turkish Journal of Engineering, 3(4), 201-205.
https://doi.org/10.31127/tuje.556349
- Holman, J. B., Shi, Z., Fadahunsi, A. A., Li, C., & Ding, W. (2023). Advances on microfluidic paper-based electroanalytical devices. Biotechnology Advances, 63, 108093.
https://doi.org/10.1016/j.biotechadv.2022.108093
- Guler, M. T., & Bilican, İ. (2020). A new method for the measurement of soft material thickness. Turkish Journal of Engineering, 4(2), 97-103.
https://doi.org/10.31127/tuje.636350
Year 2024,
Volume: 8 Issue: 3, 551 - 562, 28.07.2024
Nagihan Okutan Arslan
,
Ragheid Mohammed Helmy Atta
,
Levent Trabzon
Project Number
TUBITAK 218M528, ITU BAP 40707
References
- Aralekallu, S., Boddula, R., & Singh, V. (2023). Development of glass-based microfluidic devices: A review on its fabrication and biologic applications. Materials & Design, 225, 111517.
https://doi.org/10.1016/j.matdes.2022.111517
- Gao, B., Li, X., Yang, Y., Chu, J., & He, B. (2019). Emerging paper microfluidic devices. Analyst, 144, 6497–6511.
https://0-doi-org/10.1039/C9AN01275C
- Mousaabadi, K.Z., Vandishi, Z.T., Kermani, M., Arab, N., & Ensafi, A.A. (2023). Recent developments toward microfluidic point-of-care diagnostic sensors for viral infections. Trends in Analytical Chemistry, 169, 117361. https://doi.org/10.1016/j.trac.2023.117361
- Shi, L., Li, Y., Jia, C., Shan, J., Wang, S., Liu, S., Sun, J., Zhang, D., Ji, Y., & Wang, J. (2023). An overview of fluorescent microfluidics into revealing the mystery of food safety analysis: Mechanisms and recent applications. Trends in Food Science & Technology, 138, 100–115.
https://doi.org/10.1016/j.tifs.2023.05.016
- Li, T., Yang, N., Pan, X., Zhang, X., & Xu, L. (2024). A portable microfluidic photometric detection method based on enzyme linked immunoscatter enhancement. Biosensors and Bioelectronics, 244, 115794. https://doi.org/10.1016/j.bios.2023.115794
- Thakur, R., & Fridman, G. Y. (2022). Low cost, ease-of-access fabrication of microfluidic devices using wet paper molds. Micromachines (Basel), 13(9), 1408. https://doi.org/10.3390/mi13091408
- Hassan, M. M., Yi, X., Zareef, M., Li, H., & Chen, Q. (2023). Recent advancements in optical, electrochemical, and photoelectrochemical transducer-based microfluidic devices for pesticide and mycotoxins in food and water. Trends in Food Science & Technology, 142, 104230.
https://doi.org/10.1016/j.tifs.2023.104230
- Lu, S.-Y., Tseng, C.-C., Yu, C.-X., Chen, T.-L., Huang, K.-H., Fu, L.-M., & Wu, P.-H. (2024). Rapid microfluidic fluorescence detection platform for determination of whole blood sodium. Sensors & Actuators: B. Chemical, 400, 134839.
https://doi.org/10.1016/j.snb.2023.134839
- Pou, K.R.J., Raghavan, V., & Packirisamy, M. (2022). Microfluidics in smart packaging of foods. Food Research International, 161, 111873.
https://doi.org/10.1016/j.foodres.2022.111873
- Berthier, E., Dostie, A.M., Lee, U.N., Berthier, J., & Theberge, A.B. (2019). Open Microfluidic Capillary Systems. Anal Chemistry, 91(14), 8739–8750. https://doi.org/10.1021/acs.analchem.9b01429
- Zhang, Y., Yu, Y., Yang, X., Yuan, X., & Zhang, J. (2024). Pb(II) inhibits CRISPR/Cas12a activation and application for paper-based microfluidic biosensor assisted by smartphone. Sensors & Actuators: B. Chemical, 398, 134732.
https://doi.org/10.1016/j.snb.2023.134732
- Nishat, S., Jafry, A. T., Martinez, A. W., & Awan, F. R. (2021). Paper-based microfluidics: Simplified fabrication and assay methods. Sensors and Actuators: B. Chemical, 336, 129681.
https://doi.org/10.1016/j.snb.2021.129681
- Agustini, D., Caetano, F. R., Quero, R. F., da Silva, J. A. F., Bergamini, M. F., Marcolino-Junior, L. H., & de Jesus, D. P. (2021). Microfluidic devices based on textile threads for analytical applications: state of the art and prospects. Anal. Methods, 13, 4830. https://0-doi-org/10.1039/D1AY01337H
- Martinez, A.W., Phillips, S.T., Butte, M.J., & Whitesides, G.M. (2007). Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angewandte Chemie International Edition, 46(8), 1318-20. https://doi.org/10.1002/anie.200603817
- Teymoori, M. & Yalçınkaya, A.D. (2023). A low-cost microwave metamaterial-inspired sensing platform for quantitative paper microfluidic analytical devices. Sensors & Actuators: A. Physical, 363, 114684. https://doi.org/10.1016/j.sna.2023.114684
- Sanjayan, C. G., Ravikumar, C. H., & Balakrishna, R. G. (2023). Perovskite QD-based paper microfluidic device for simultaneous detection of lung cancer biomarkers – Carcinoembryonic antigen and neuron-specific enolase. Chemical Engineering Journal, 464, 142581. https://doi.org/10.1016/j.cej.2023.142581
- Saiboh, T., Malahom, N., Prakobjij, A., Seebunrueng, K., Amatatongchai, M., Chairam, S., Sameenoi, Y., & Jarujamrus, P. (2023). Visual detection of formalin in food samples by using a microfluidic thread-based analytical device. Microchemical Journal, 190, 108685. https://doi.org/10.1016/j.microc.2023.108685
- Hamidon, N. N., Hong, Y., Salentijn, G. IJ., & Verpoorte, E. (2018). Water-based alkyl ketene dimer ink for user-friendly patterning in paper microfluidics. Analytica Chimica Acta, 1000, 180-190.
https://doi.org/10.1016/j.aca.2017.10.040
- Derakhshani, M., Jahanshahi, A., & Ghourchian, H. (2023). Addressing the sample volume dependency of the colorimetric glucose measurement on microfluidic paper-based and thread/paper-based analytical devices using a novel low-cost analytical viewpoint. Microchemical Journal, 195, 109545. https://doi.org/10.1016/j.microc.2023.109545
- Hussain, G. H., Jafry, A. T., Malik, S., Shah, S. F., Nishat, S., & Awan, F. R. (2023). Multifunctional rotational active valve for flow control in paper-based microfluidic devices. Sensors & Actuators: B. Chemical, 378, 133142.
https://doi.org/10.1016/j.snb.2022.133142
- Müller, R. H. & Clegg, D. L. (1949). Automatic paper chromatography. Analytcial Chemistry, 21, (9), 1123-1125. https://pubs.acs.org/doi/abs/10.1021/ac60033a032
- Sarabi, M., Yigci, D., Alseed, M. M., Mathyk, B. A., Ata, B., Halicigil, C., & Tasoğlu, S. (2022). Disposable paper-based microfluidics for fertility testing. iScience, 25, 104986. https://doi.org/10.1016/j.isci.2022.104986
- Kulkarni, M. B., Ayachit, N. H., Aminabhavi, T. M., & Pogue, B. W. (2023). Recent advances in microfluidics-based paper analytical devices (μPADs) for biochemical sensors: From fabrication to detection techniques. Biochemical Engineering Journal, 198, 109027.
https://doi.org/10.1016/j.bej.2023.109027
- Yuan, M., Li, C., Zheng, Y., Cao, H., Ye, T., Wu, X., Hao, L., Yin, F., Yu, J., & Xu, F. (2024). A portable multi-channel fluorescent paper-based microfluidic chip based on smartphone imaging for simultaneous detection of four heavy metals. Talanta, 266, 125112. https://doi.org/10.1016/j.talanta.2023.125112
- Çelik, M. (2022). An experimental study of the performance of a low-cost paper-based membraneless direct hydrogen peroxide fuel cell. Turkish Journal of Engineering, 6(2), 161-165. https://doi.org/10.31127/tuje.891626
- Klemm, D., Heublein, B., Fink, H. -P., & Bohn, A. (2005). Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angewandte Chemie International Edition, 44, 3358 – 3393.
https://0-doi-org/10.1002/anie.200460587
- Pelton, R. (2009). Bioactive paper provides a low-cost platform for diagnostics. Trends Analyt Chemistry, 28(8), 925–942. https://doi.org/10.1016/j.trac.2009.05.005
- Ray, R., Prabhu, A., Prasad D., Garlapati, V.K., Amnabhavi, M., Mani, N.K., & Simal-Gandara, J. (2022). Paper-based microfluidic devices for food adulterants: Cost-effective technological monitoring systems. Food Chemistry, 390, 133173. https://doi.org/10.1016/j.foodchem.2022.133173
- Li, X., Ballerini, D.R., & Shen, W. (2012). A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics, 6(1), 11301-1130113. https://doi.org/10.1063/1.3687398
- Guan, H., Du, S., Han, B., Zhang, Q., & Wang, D. (2023). A rapid and sensitive smartphone colorimetric sensor for detection of ascorbic acid in food using the nanozyme paper-based microfluidic chip. LWT - Food Science and Technology, 184, 115043. https://doi.org/10.1016/j.lwt.2023.115043
- Xia, Y., Si, J., & Li, Z. (2016). Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosensors and Bioelectronics, 77, 774–789. http://dx.doi.org/10.1016/j.bios.2015.10.032
- Pantoja, R., Nagarah, J. M., Starace, D. M., Melosh, N. A., Blunck, R., Bezanilla, F., & Heath, J. R. (2004). Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics. Biosens Bioelectronics, 20, 509–517. https://doi.org/10.1016/j.bios.2004.02.020
- Chung, S., Loh, A., Jennings, C. M., Sosnowski, K., Ha, S. Y., Yim, H., & Jeong-Yeol, Y. (2023). Capillary flow velocity profile analysis on paper-based microfluidic chips for screening oil types using machine learning. Journal of Hazardous Materials, 447, 130806. https://doi.org/10.1016/j.jhazmat.2023.130806
- Zhang, Q., Feng, S., Lin, L., Mao, S., & Lin, J.-M. (2021). Emerging open microfluidics for cell manipulation. Chemical Society Reviews, 50, 5333–5348.
https://doi.org/10.1039/D0CS01516D
- Chaikan, P., Udnan, Y., Sananmuang, R., Ampiah-Bonney, R.J., & Chaiyasith, W.C. (2020). A low-cost microfluidic paper-based analytical device (μPAD) with column chromatography preconcentration for the determination of paraquat in vegetable samples. Microchemical Journal, 159, 105355. https://doi.org/10.1016/j.microc.2020.105355
- Nery, E. & Kubota, L. T. (2013). Sensing approaches on paper-based devices: a review. Anal Bioanal Chemistry, 405, 7573–7595. https://0-doi-org/10.1007/s00216-013-6911-4
- Cardoso, T. M. G., de Souza, F. R., Garcia, P. T., Rabelo, D., Henry, C. S., & Coltro, W. K. T. (2017). Versatile fabrication of paper-based microfluidic devices with high chemical resistance using scholar glue and magnetic masks. Analytica Chimica Acta, 974, 63-68. http://dx.doi.org/10.1016/j.aca.2017.03.043
- Silva-Neto, H. A., Arantes, I. V. S., Ferreira, A. L., do Nascimento, G. H. M., Meloni, G. N., de Araujo, W. R., Paixão, T. R. L. C., & Coltro, W. K. T. (2023). Recent advances on paper-based microfluidic devices for bioanalysis. TrAC Trends in Analytical Chemistry, 158, 116893.
https://doi.org/10.1016/j.trac.2022.116893
- Safiabadi Tali, S. H., Hajimiri, H., Sadiq, Z., & Jahanshahi-Anbuhi, S. (2023). Engineered detection zone to enhance color uniformity on paper microfluidics fabricated via Parafilm®-heating-laser-cutting. Sensors and Actuators B: Chemical, 380, 133324. https://doi.org/10.1016/j.snb.2023.133324
- Stefano, J. S., Orzari, L. O., Silva-Neto, H. A., de Ataìde, V. N., Medes, L. F., & Coltro, W. K. T. (2022). Different approaches for fabrication of low-cost electrochemical sensors. Current Opinion in Electrochemistry, 32, 100893.
https://doi.org/10.1016/j.coelec.2021.100893
- Liao, X., Zhang, Y., Zhang, Q., Zhou, J., Ding, T., & Feng, J. (2023). Advancing point-of-care microbial pathogens detection by material-functionalized microfluidic systems. Trends in Food Science & Technology, 135, 115–130.
https://doi.org/10.1016/j.tifs.2023.03.022
- Tan, W., Powles, E., Zhang, L., & Shen, W. (2021). Go with the capillary flow. Simple thread-based microfluidics. Sensors and Actuators: B. Chemical, 334, 129670.
https://doi.org/10.1016/j.snb.2021.129670
- Baysal, G., Önder, S., Göcek, İ., Trabzon, L., Kızıl, H., Kök, F. N., & Kayaoğlu, B. K. (2015). Design and fabrication of a new nonwoven-textile-based platform for biosensor construction. Sensors and Actuators B, 208, 475–484.
https://dx.doi.org/10.1016/j.snb.2014.11.042
- Chen, L., Ghiasvand, A., & Paull, B. (2023). Applications of thread-based microfluidics: Approaches and options for detection. Trends in Analytical Chemistry, 161, 117001.
https://doi.org/10.1016/j.trac.2023.117001
- Mesquita, P., Gong, L., & Lin, Y. (2022). Low-cost microfluidics: Towards affordable environmental monitoring and assessment. Frontiers in Lab on a Chip Technologies, 1, 1074009.
https://doi.org/10.3389/frlct.2022.1074009
- Tzianni, E. I., Sakkas, V. A., & Prodromidis, M. I. (2024). Wax screen-printable ink for massive fabrication of negligible-to-nil cost fabric-based microfluidic (bio)sensing devices for colorimetric analysis of sweat. Talanta, 269, 125475.
https://doi.org/10.1016/j.talanta.2023.125475
- Bruzewicz, D. A., Reches, M., & Whitesides, G. M. (2008). Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper. Anal. Chemistry, 80, 3387-3392. https://0-doi-org/10.1021/ac702605a
- Li, X., Tian, J., Garnier, G., & Shen, W. (2010). Fabrication of paper-based microfluidic sensors by printing. Colloids and Surfaces B: Biointerfaces, 76, 564–570. https://doi.org/10.1016/j.colsurfb.2009.12.023
- Li., X., Tian, J., Nguyen, T., & Shen, W. (2008). Paper-Based Microfluidic Devices by Plasma Treatment. Anal Chemistry, 2008, 80, 9131–9134. https://doi.org/10.1021/ac801729t
- Songjaroen, T., Dungchai, W., Chailapakul, O., & Laiwattanapaisal, W. (2011). Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta, 85, 2587–2593. https://dx.doi.org/10.1016/j.talanta.2011.08.024
- Bandopadhyay, A. A., & Das, P. K. (2023). Paper based microfluidic devices: a review of fabrication techniques and applications. The European Physical Journal Special Topics, 232(6), 781-815. https://doi.org/10.1140/epjs/s11734-022-00727-y
- Yamada, K., Henares, T.G., Suzuki, K., & Citterio, D. (2015). Paper-Based Inkjet-Printed Microfluidic Analytical Devices. Angewandte Chemie International Edition., 54, 5294–5310. https://0-doi-org/10.1002/anie.201411508
- Levine, L. M. & Campbell, T. (2007). Combining Additive and Subtractive Techniques in the Design and Fabrication of Microfluidic Devices. NSTI Nanotechnology Conference and Trade Show., 3, 385.
- Roller, R. M. & Lieberman, M. (2023). Beyond wax printing: The future of paper analytical device fabrication. Sensors and Actuators: B. Chemical, 392, 134059. https://doi.org/10.1016/j.snb.2023.134059
- Trinh, K. T. L., Chae, W. R., & Lee, N. Y. (2022). Recent advances in the fabrication strategies of paper-based microfluidic devices for rapid detection of bacteria and viruses. Microchemical Journal, 180, 107548. https://doi.org/10.1016/j.microc.2022.107548
- Coltro, W. K. T., Chao-Min, C., Carrilho, E., & de Jesus, D. P. (2014). Recent advances in low-cost microfluidicplatforms for diagnostic applications. Electrophoresis, 35, 2309–2324. https://0-doi-org/10.1002/elps.201400006
- Li, Z., Liu, H., He, X., Xu, F., & Li, F. (2018). Pen-on-paper strategies for point-of-care testing of human health. TrAC Trends in Analytical Chemistry, 108, 50-64. https://doi.org/10.1016/j.trac.2018.08.010
- Lee, J. N., Park, C., & Whitesides, G. M. (2003). Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices. Anal Chemistry, 75, 6544-6554. https://0-doi-org /10.1021/ac0346712
- Oyola-Reynoso, S., Heim, A. P., Halbertsma-Black, J., Zhao, C., Tevis, I. D., Çınar, S., Cademartiri, R., Liu, X., Bloch, J.-F., & Thuo, M. M. (2015). Draw your assay: Fabrication of low-cost paper-based diagnostic and multi-well test zones by drawing on a paper. Talanta, 144, 289–293.
http://dx.doi.org/10.1016/j.talanta.2015.06.018
- Lu, Y., Shi, W., Jiang, L., Qin, J, & Lin, B. (2009). Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis, 30, 1497–1500.
https://0-doi-org/10.1002/elps.200800563
- Walia, S., Bhatnagar, I., Liu, J., Mitra, S.K., & Asthana, A. (2021). A novel method for fabrication of paper-based microfluidic devices using BSA-ink. International Journal of Biological Macromolecules, 193, 1617–1622.
https://doi.org/10.1016/j.ijbiomac.2021.10.224
- Nuchtavorn, N. & Macka, M. (2016). A novel highly flexible, simple, rapid and low-cost fabrication tool for paper-based microfluidic devices (mPADs) using technical drawing pens and in-house formulated aqueous inks. Analytica Chimica Acta, 919, 70-77. http://dx.doi.org/10.1016/j.aca.2016.03.018
- Sousa, L. R., Duarte, L. C., & Coltro, W. K. T. (2020). Instrument-free fabrication of microfluidic paper-based analytical devices through 3D pen drawing. Sensors & Actuators: B. Chemical, 312, 128018. https://doi.org/10.1016/j.snb.2020.128018
- Abe, K., Suzuki, K., & Ctterio, D. (2008). Inkjet-Printed Microfluidic Multianalyte Chemical Sensing Paper. Anal Chemistry, 80,6928–6934. https://0-doi-org/10.1021/ac800604v
- Gassend, V., Hauf, C. R., & Chen, J. (2022). Research and Applications of Inkjet Printing for OLED Mass Production. SID Symposium Digest of Technical Papers, 53, 1, 398-401.
https://0-doi-org/10.1002/sdtp.15505
- Waasdorp, R., van den Heuvel, O., Versluis, F., Hajee, B., & Ghatkesar, M. K. (2018). Accessing individual 75-micron diameter nozzles of a desktop inkjet printer to dispense picoliter droplets on demand. RSC Advances, 18, 8(27), 14765–14774.
https://doi.org/10.1039%2Fc8ra00756j
- Espinosa, A., Diaz, J., Vazquez, E., Acosta, L., Santago, A., & Cunci, L. (2022). Fabrication of paper-based microfluidic devices using a 3D printer and a commercially-available wax filament. Talanta Open, 6, 100142.
https://doi.org/10.1016/j.talo.2022.100142
- Ghosh, R., Gopalakrishnan, S., Savitha, R., Renganathan, T., & Pushpavanam, S. (2019). Fabrication of laser printed microfluidic paper-based analytical devices (LP-µPADs) for point-of-care applications. Scientific Reports, 9, 7896. https://doi.org/10.1038%2Fs41598-019-44455-1
- Carrilho, E., Martinez, A. W., & Whitesides, G. M. (2009). Understanding wax printing: A simple micropatterning process for paper-based microfluidics. Anal Chemistry, 81, 16, 7091–7095. https://doi.org/10.1021/ac901071p
- Zhan, Z., An, J., Wei, Y., Tran, V. T., & Du, H. (2017). Inkjet-printed optoelectronics. Nanoscale, 9, 965–993. https://0-doi-org/10.1039/C6NR08220C
- Singh, B. M., Haverinen, H. M., Dhagat, P., & Jabbour, G. E. (2010). Inkjet Printing—Process and Its Applications. Advanced Materials, 22, 673–685. https://0-doi-org/10.1002/adma.200901141
- Mettakoonpitak, J., Khongsoun, K., Wongwan, N., kaewbutdee, S., Siripinyanond, A., Kuharuk, A., & Henry, C. S. (2021). Simple biodegradable plastic screen-printing for microfluidic paper-based analytical devices. Sensors and Actuators B: Chemical, 331, 15, 129463.
https://doi.org/10.1016/j.snb.2021.129463
- He, Y., Wu, Y., Fu, J. Z., & Wu, W. B. (2015). Fabrication of paper-based microfluidic analysis devices: a review. RSC Advances, 5, 78109–78127. https://0-doi-org/10.1039/C5RA09188H
- Chitnis, G., Ding, Z., Chang, C. L., Savran, C. A., & Ziaie, B. (2011). Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip, 11, 1161–1165.
https://0-doi-org/10.1039/C0LC00512F
- Tong, X., Ga, L., Zhao, R., & Ai, J. (2021). Research progress on the applications of paper chips. RSC Advances, 11(15), 8793–8820.
https://doi.org/10.1039%2Fd0ra10470a
- Cate, D. M., Adkins, J. A., Mettakoonpitak, J., & Henry, C. S. (2015). Recent Developments in Paper-Based Microfluidic Devices. Anal Chemistry, 87, 19−41. https://doi.org/10.1021/ac503968p
- Hong, J., Ye, X., & Zhang, Y.-H. (2007). Quantitative determination of cellulose accessibility to cellulase based on adsorption of a nonhydrolytic fusion protein containing CBM and GFP with its applications. Langmuir, 23, 12535-12540.
https://0-doi-org/10.1021/la7025686
- Kolliopoulos, P. & Kumar, S. (2021). Capillary flow of liquids in open microchannels: overview and recent advances. npj Microgravity 7, 51, 9242. https://doi.org/10.1038/s41526-021-00180-6
- Casavant, B. P., Berthier, E., Theberge, A. B., Berthier, J., Montanez-Sauri, S. I., Bischel, L. L., Brakke, K., Hedman, C. J., Bushman, W., Keller, N. P., & Beebe, D. J. (2013). Suspended microfluidics. Proceedings of the National Academy of Sciences, 18, 110(25), 10111-10116. https://doi.org/10.1073%2Fpnas.1302566110
- Xian, Z., Dai, P., Su, W., Sun, C., Liu, L., You, H., & Liu, Y. (2023). A novel microfuidics PMMA/paper hybrid bioimmunosensor for laser-induced fuorescence detection in the determination of alpha-fetoprotein from serum. Microchemical Journal, 195, 109476. https://doi.org/10.1016/j.microc.2023.109476
- Maejima, K., Tomikawa, S., Suzuki, K., & Citterio, D. (2013). Inkjet printing: an integrated and green chemical approach to microfluidic paper-based analytical devices. RSC Advances, 3, 9258-9263. https://doi.org/10.1039/C3RA40828K
- Boylu, M. A., & Ceyhan, U. Controlling the Motion of Interfaces in Capillary Channels with Non-uniform Surface Wettability. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 25(75), 675-691.
https://doi.org/10.21205/deufmd.2023257513
- Janiszewska, N., Rackowska, J., Budkowski, A., Gajos, K., Stetsyshyn, Y., Michalik, M., & Awsiuk, K. (2020). Dewetting of Polymer Films Controlled by Protein Adsorption. Langmuir, 36, 11817−11828. https://doi.org/10.1021/acs.langmuir.0c01718
- Berthier, J., Gosselin, D., Pham, A., Delapierre, G., Belgacem, N., & Chaussy, D. (2016). Capillary Flow Resistors: Local and Global Resistors. Langmuir, 32, 3, 651-928. https://doi.org/10.1021/acs.langmuir.5b02090
- Berthier, J., Brakke, K.A., Gosselin, D., Berthier, E., & Navarro, F. (2017). Thread-based microfluidics: Flow patterns in homogeneous and heterogeneous microfiber bundles. Medical Engineering and Physics, 48, 55–61.
https://doi.org/10.1016/j.medengphy.2017.08.004
- Zheng, Q., Wang, B., & Guo, Z. (2024). Recent advances in microfluidics by tuning wetting behaviors. Materials Today Physics, 40, 101324. https://doi.org/10.1016/j.mtphys.2023.101324
- Martinez, A. W., Plillips, S. T., Whitesides, G. M., & Carrilho, E. (2010). Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Analytical Chemistry, 82, 1, 3-10.
https://doi.org/10.1021/ac9013989
- Buldum, B. B., & Cagan, S. C. (2017). The optimization of surface roughness of AZ91D magnesium alloy using ANOVA in ball burnishing process. Turkish Journal of Engineering, 1(1), 25-31.
https://doi.org/10.31127/tuje.316860
- Brazaca, L. C., Imamura, A. H., Blasques, R. V., Camargo, J. R., Janegitz, B. C., & Carrilho, E. (2024). The use of biological fluids in microfluidic paper-based analytical devices (μPADs): Recent advances, challenges and future perspectives. Biosensors and Bioelectronics, 246, 115846.
https://doi.org/10.1016/j.bios.2023.115846
- Kepır, Y., Gunoz, A., & Kara, M. (2022). Repairing of damaged composite materials and self-healing composites. Turkish Journal of Engineering, 6(2), 149-155. https://doi.org/10.31127/tuje.866955
Özbek, Ö., Bozkurt, Ö. Y., & Erkliğ, A. (2020). Low velocity impact behaviors of basalt/epoxy reinforced composite laminates with different fiber orientations. Turkish Journal of Engineering, 4(4), 197-202. https://doi.org/10.31127/tuje.644025
- Güngör, A. (2023). The effect of Cumin Black (Nigella Sativa L.) as bio-based filler on chemical, rheological and mechanical properties of epdm composites. Turkish Journal of Engineering, 7(4), 279-285. https://doi.org/10.31127/tuje.1180753
Güler, Ö., gökhan Albayrak, M., Takgün, M., & Güler, S. H. (2017). The investigation on electrical and optical properties of CdO/CNT nanocomposite. Turkish Journal of Engineering, 1(2), 61-65.
https://doi.org/10.31127/tuje.317778
- Koruyucu, A. (2019). Removal of colour pollutions in dye baths with mordants. Turkish Journal of Engineering, 3(4), 201-205.
https://doi.org/10.31127/tuje.556349
- Holman, J. B., Shi, Z., Fadahunsi, A. A., Li, C., & Ding, W. (2023). Advances on microfluidic paper-based electroanalytical devices. Biotechnology Advances, 63, 108093.
https://doi.org/10.1016/j.biotechadv.2022.108093
- Guler, M. T., & Bilican, İ. (2020). A new method for the measurement of soft material thickness. Turkish Journal of Engineering, 4(2), 97-103.
https://doi.org/10.31127/tuje.636350