Derleme
BibTex RIS Kaynak Göster

Advancements in polymeric matrix composite production: a review on methods and approaches

Yıl 2024, Cilt: 8 Sayı: 4, 677 - 686, 31.10.2024
https://doi.org/10.31127/tuje.1468998

Öz

This study focused on the comprehensive exploration of composite materials, elucidating their properties, and classifying them based on matrix materials. Emphasis was placed on thermoplastic matrix composite production methods, shedding light on their properties. An extensive examination of various production processes, ranging from traditional methods to cutting-edge technologies like automatic fiber placement and additive manufacturing were undertaken. The study extensively examined various production methods for thermoplastic matrix composites, discussing the advantages, disadvantages, and optimal characteristics of each technique. Thermoplastic matrix composite production processes encompassed such as hand lay-up, spray-up, filament winding, vacuum bag molding, vacuum infusion, resin transfer molding, compression molding, pultrusion, injection molding, centrifugal casting and lamination were discussed. While composite materials offered corrosion protection, high temperature resistance, and electrical stability, challenges including costly production, intricated repair processes, and short shelf life persist. Despite the popularity of thermoset matrix composites, the study underscores the need for more efficient thermoplastic composite production methods, addressing emerging trends and digital transformations reshaping the landscape of composite manufacturing. Anticipating the integration of machine learning algorithms for optimizing parameters, the study foresaw a future where composite production processes become significantly more efficient and comprehensive. The review was underscored the transformative impact of machine learning and process modelling on optimization studies, paving the way for more efficient and comprehensive composite manufacturing.

Kaynakça

  • Islam, F., Wanigasekara, C., Rajan, G., Swain, A., & Prusty, B. G. (2022). An approach for process optimisation of the Automated Fibre Placement (AFP) based thermoplastic composites manufacturing using Machine Learning, photonic sensing and thermo-mechanics modelling. Manufacturing Letters, 32, 1-14.
  • Niu, C., Luan, C., Shen, H., Song, X., Fu, J., Zhang, L., Sun, Y., Xu, G., & Ruan, Z. (2022). Tunable soft–stiff hybridized fiber-reinforced thermoplastic composites using controllable multimaterial additive manufacturing technology. Additive Manufacturing, 55, 102836, 1-11.
  • Hürkamp, A., Lorenz, R., Ossowski, T., Behrens, B. A., & Dröder, K. (2021). Simulation-based digital twin for the manufacturing of thermoplastic composites. Procedia CIRP, 100, 1-6.
  • Li, N., Link, G., Jelonnek, J., Morais, M. V. C., & Henning, F. (2021). Microwave additive manufacturing of continuous carbon fibers reinforced thermoplastic composites: Characterization, analysis, and properties. Additive Manufacturing, 44, 102035, 1-13.
  • Zaami, A., Baran, I., Bor, T. C., & Akkerman, R. (2021). Optical characterization of fiber-reinforced thermoplastic tapes for laser-based composite manufacturing. Composites Part A: Applied Science and Manufacturing, 146, 106402, 1-13.
  • Chen, J., Fu, K., & Li, Y. (2021). Understanding processing parameter effects for carbon fibre reinforced thermoplastic composites manufactured by laser-assisted automated fibre placement (AFP). Composites Part A: Applied Science and Manufacturing, 140, 106160, 1-10.
  • Aliyeva, N., Sas, H. S., & Saner Okan, B. (2021). Recent developments on the overmolding process for the fabrication of thermoset and thermoplastic composites by the integration of nano/micron-scale reinforcements. Composites Part A: Applied Science and Manufacturing, 149, 106525, 1-14.
  • Ramaswamy, K., O'Higgins, R. M., Lyons, J., McCarthy, M. A., & McCarthy, C. T. (2021). An evaluation of the influence of manufacturing methods on interlocked aluminium-thermoplastic composite joint performance. Composites Part A: Applied Science and Manufacturing, 143, 106281, 1-16.
  • Volk, M., Wong, J., Arreguin, S., & Ermanni, P. (2021). Pultrusion of large thermoplastic composite profiles up to Ø 40 mm from glass-fibre/PET commingled yarns. Composites Part B: Engineering, 227, 109339. https://doi.org/10.1016/j.compositesb.2021.109339
  • Kara, H. (2022). The effect of holding time on the mechanical properties of TFP produced thermoplastic matrix composites under compression molding process (Unpublished master’s thesis). Kocaeli University, Kocaeli, Turkey.
  • Örçen, G. (2005). Elastic and elasto-plastic stress analysis reinforced stainless steel thermoplastic matrix laminated plates (Unpublished master’s thesis). University of Fırat, Elazığ, Turkey.
  • Yılmaz, A. N. (2018). PVC coated glass fiber reinforced composite material production and investigation of the mechanical properties (Unpublished master’s thesis). Necmettin Erbakan University, Konya, Turkey.
  • Bekem, A. (2013). Production and characterization of fiber reinforced thermoplastic composite material (Unpublished doctoral dissertation). Yildiz Technical University, İstanbul, Turkey.
  • Kumar, A., & Parihar, A. S. (2016). A review on mechanical and tribological behaviors of stir cast copper–silicon carbide matrix composites. International Research Journal of Engineering and Technology, 3, 2658-2664.
  • Kandaş, H. (2018). Low velocity impact behavior of glass fiber reinforced polypropylene composites with different preloads (Unpublished master’s thesis). Dokuz Eylül University, İzmir, Turkey.
  • Rahim, F., Shah, S., Megat-Yusoff, P., Hussnain, S., Choudhry, R., & Hussain, M. (2024). Mechanical and viscoelastic properties of novel resin-infused thermoplastic tri-block copolymer 3D glass fabric composites. Polymer Testing, 108510. https://doi.org/10.1016/j.polymertesting.2024.108510
  • Özben, T. (2005). The effects of the support type and the material parameters on the elastic and elasto-plastic behaviors of thermoplastic laminated plates (Unpublished doctoral dissertation). University of Fırat, Elazığ, Turkey.
  • Gattinger, J., Kirsch, M., & Kirchebner, B. (2018). Flexible composite strands through extrusion of crimped fiber reinforced thermoplastic elastomers. Materials Today Communications, 15, 43–47.
  • Raji, M., Abdellaoui, H., Essabir, H., Kakou, C. A., Bouhfid, R., & El Kacem Qaiss, A. (2019). Prediction of the cyclic durability of woven-hybrid composites. In Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (pp. 27–62).
  • Balasubramanian, K., Sultan, M. T. H., & Rajeswari, N. (2018). Manufacturing techniques of composites for aerospace applications. In Sustainable Composites for Aerospace Applications (pp. 55–67).
  • Aleksendrić, D., & Carlone, P. (2015). Composite materials manufacturing. In Soft Computing in the Design and Manufacturing of Composite Materials (pp. 15–38).
  • Quanjin, M., Rejab, M. R. M., Idris, M. S., Zhang, B., & Kumar, N. M. (2019). Filament winding technique: SWOT analysis and applied favorable factors. SCIREA Journal of Mechanical Engineering, 3, 1-25.
  • Mallick, P. K. (2021). Thermoset matrix composites for lightweight automotive structures. In Materials, Design and Manufacturing for Lightweight Vehicles (pp. 229–263).
  • Mouritz, A. P. (2012). Manufacturing of fibre–polymer composite materials. In Introduction to Aerospace Materials (pp. 303–337).
  • Gajjar, T., Shah, D. B., Joshi, S. J., & Patel, K. M. (2020). Analysis of process parameters for composites manufacturing using vacuum infusion process. Journal of Manufacturing Processes, 21, 1244-1249.
  • Abdurohman, K., & Siahaan, M. (2018). Effect of mesh-peel ply variation on mechanical properties of E-glass composite by infusion vacuum method. Journal of Physics: Conference Series, 1005(1), 012009.
  • Razali, N., Mansor, M. R., Omar, G., Kamarulzaman, S. A. F. S., Zin, M. H., & Razali, N. (2021). Out-of-autoclave as a sustainable composites manufacturing process for aerospace applications. In Design for Sustainability: Green Materials and Processes (pp. 395–413).
  • Dai, D., & Fan, M. (2014). Wood fibres as reinforcements in natural fibre composites: Structure, properties, processing and applications. In Natural Fibre Composites: Materials, Processes and Applications (pp. 3–65).
  • Dumont, P., Martoïa, F., & Orgéas, L. (2023). Compression moulding. British Plastics and Rubber, 273–300.
  • De, B., Bera, M., Bhattacharjee, D., Ray, B. C., & Mukherjee, S. (2024). A comprehensive review on fiber-reinforced polymer composites: Raw materials to applications, recycling, and waste management. Progress in Materials Science, 146, 101326. https://doi.org/10.1016/j.pmatsci.2024.101326
  • Gayretli, B., Shanthar, R., Öpöz, T. T., & Abeykoon, C. (2024). Mechanical properties of LDPE and PS polymer matrix composites reinforced with GNP and CF — A critical review. International Journal of Lightweight Materials and Manufacture, 7(4), 572–596. https://doi.org/10.1016/j.ijlmm.2024.03.005
  • Wakeman, M. D., & Rudd, C. D. (2000). Compression molding of thermoplastic composites. In Comprehensive Composite Materials (pp. 915–963).
  • Wang, M., Guo, L., & Sun, H. (2019). Manufacture of biomaterials. In Encyclopedia of Biomedical Engineering (pp. 116–134).
  • Joshi, S. C. (2012). The pultrusion process for polymer matrix composites. In Manufacturing Techniques for Polymer Matrix Composites (PMCs) (pp. 381–413).
  • Riedel, U. (2012). Biocomposites: Long natural fiber-reinforced biopolymers. In Polymer Science: A Comprehensive Reference (pp. 295–315).
  • Goodship, V. (2016). Injection molding of thermoplastics. In Design and Manufacture of Plastic Components for Multifunctionality: Structural Composites, Injection Molding, and 3D Printing (pp. 103–170).
  • Rojas-Lema, S., Gomez-Caturla, J., Balart, R., Arrieta, M., & Garcia-Sanoguera, D. (2024). Development and characterization of thermoplastic zein biopolymers plasticized with glycerol suitable for injection molding. Industrial Crops and Products, 218, 119035. https://doi.org/10.1016/j.indcrop.2024.119035
  • Liu, S. J. (2012). Injection molding in polymer matrix composites. In Manufacturing Techniques for Polymer Matrix Composites (PMCs) (pp. 15–46).
  • Yüzbasi, N. S., & Graule, T. (2021). Colloid casting processes: Slip casting, centrifugal casting, and gel casting. In Encyclopedia of Materials: Technical Ceramics and Glasses (pp. 146–153).
  • Swift, K. G., & Booker, J. D. (2013). Casting processes. In Manufacturing Process Selection Handbook (pp. 61–91).
  • Eltawahni, H. A., Benyounis, K. Y., Twiname, E. R., & Mistler, R. E. (2019). Tape casting and lamination. In Reference Module in Materials Science and Materials Engineering.
  • Wagner, J. R., Mount, E. M., & Giles, H. F. (2014). Extrusion coating and lamination. In Elsevier eBooks (pp. 551–554).
  • Nur-E-Alam, M., Vasiliev, M., Yap, B. K., Islam, M. A., Fouad, Y., & Kiong, T. S. (2024). Design, fabrication, and physical properties analysis of laminated Low-E coated glass for retrofit window solutions. Energy and Buildings, 318, 114427. https://doi.org/10.1016/j.enbuild.2024.114427
  • Zulfiqar, S., Saad, A. A., Sharif, M. F. M., Samsudin, Z., Ali, M. Y. T., Ani, F. C., Ahmad, Z., & Abdullah, M. K. (2021). Alternative manufacturing process of 3-dimensional interconnect device using thermoforming process. Microelectronics Reliability, 127, 114373.
  • Riley, A. (2012). Plastics manufacturing processes for packaging materials. In Packaging Technology (pp. 310–360).
  • Dhakal, H. N., & Ismail, S. O. (2021). Design, manufacturing processes and their effects on bio-composite properties. In Sustainable Composites for Lightweight Applications (pp. 121–177).
  • He, X., Shi, Y., Kang, C., & Yu, T. (2017). Analysis and control of the compaction force in the composite prepreg tape winding process for rocket motor nozzles. Chinese Journal of Aeronautics, 30(2), 836–845.
  • Zaami, A., Baran, I., Bor, T. C., & Akkerman, R. (2020). New process optimization framework for laser assisted tape winding of composite pressure vessels: Controlling the unsteady bonding temperature. Materials & Design, 196, 109130. https://doi.org/10.1016/j.matdes.2020.109130
  • Pantelakis, S. G., & Baxevani, E. A. (2002). Optimization of the diaphragm forming process with regard to product quality and cost. Composites Part A: Applied Science and Manufacturing, 33(4), 459–470.
  • Codolini, A., Chen, S., Lawrence, G., Harper, L., & Sutcliffe, M. (2024). Characterization of process-induced variability in wrinkle defects during double diaphragm forming of non-crimp fabric. Composites Part B: Engineering, 281, 111549. https://doi.org/10.1016/j.compositesb.2024.111549
  • Kurtuluş, O. (2017). Experimental and numerical investigation of the open-hole effect on self-reinforced polypropylene based thermoplastic composite laminates (Unpublished master’s thesis). Uludağ University, Bursa, Turkey.
  • Kepir, Y., Günöz, A., & Kara, M. (2022). Repairing of damaged composite materials and self-healing composites. Turkish Journal of Engineering, 6(2), 149-155.
Yıl 2024, Cilt: 8 Sayı: 4, 677 - 686, 31.10.2024
https://doi.org/10.31127/tuje.1468998

Öz

Kaynakça

  • Islam, F., Wanigasekara, C., Rajan, G., Swain, A., & Prusty, B. G. (2022). An approach for process optimisation of the Automated Fibre Placement (AFP) based thermoplastic composites manufacturing using Machine Learning, photonic sensing and thermo-mechanics modelling. Manufacturing Letters, 32, 1-14.
  • Niu, C., Luan, C., Shen, H., Song, X., Fu, J., Zhang, L., Sun, Y., Xu, G., & Ruan, Z. (2022). Tunable soft–stiff hybridized fiber-reinforced thermoplastic composites using controllable multimaterial additive manufacturing technology. Additive Manufacturing, 55, 102836, 1-11.
  • Hürkamp, A., Lorenz, R., Ossowski, T., Behrens, B. A., & Dröder, K. (2021). Simulation-based digital twin for the manufacturing of thermoplastic composites. Procedia CIRP, 100, 1-6.
  • Li, N., Link, G., Jelonnek, J., Morais, M. V. C., & Henning, F. (2021). Microwave additive manufacturing of continuous carbon fibers reinforced thermoplastic composites: Characterization, analysis, and properties. Additive Manufacturing, 44, 102035, 1-13.
  • Zaami, A., Baran, I., Bor, T. C., & Akkerman, R. (2021). Optical characterization of fiber-reinforced thermoplastic tapes for laser-based composite manufacturing. Composites Part A: Applied Science and Manufacturing, 146, 106402, 1-13.
  • Chen, J., Fu, K., & Li, Y. (2021). Understanding processing parameter effects for carbon fibre reinforced thermoplastic composites manufactured by laser-assisted automated fibre placement (AFP). Composites Part A: Applied Science and Manufacturing, 140, 106160, 1-10.
  • Aliyeva, N., Sas, H. S., & Saner Okan, B. (2021). Recent developments on the overmolding process for the fabrication of thermoset and thermoplastic composites by the integration of nano/micron-scale reinforcements. Composites Part A: Applied Science and Manufacturing, 149, 106525, 1-14.
  • Ramaswamy, K., O'Higgins, R. M., Lyons, J., McCarthy, M. A., & McCarthy, C. T. (2021). An evaluation of the influence of manufacturing methods on interlocked aluminium-thermoplastic composite joint performance. Composites Part A: Applied Science and Manufacturing, 143, 106281, 1-16.
  • Volk, M., Wong, J., Arreguin, S., & Ermanni, P. (2021). Pultrusion of large thermoplastic composite profiles up to Ø 40 mm from glass-fibre/PET commingled yarns. Composites Part B: Engineering, 227, 109339. https://doi.org/10.1016/j.compositesb.2021.109339
  • Kara, H. (2022). The effect of holding time on the mechanical properties of TFP produced thermoplastic matrix composites under compression molding process (Unpublished master’s thesis). Kocaeli University, Kocaeli, Turkey.
  • Örçen, G. (2005). Elastic and elasto-plastic stress analysis reinforced stainless steel thermoplastic matrix laminated plates (Unpublished master’s thesis). University of Fırat, Elazığ, Turkey.
  • Yılmaz, A. N. (2018). PVC coated glass fiber reinforced composite material production and investigation of the mechanical properties (Unpublished master’s thesis). Necmettin Erbakan University, Konya, Turkey.
  • Bekem, A. (2013). Production and characterization of fiber reinforced thermoplastic composite material (Unpublished doctoral dissertation). Yildiz Technical University, İstanbul, Turkey.
  • Kumar, A., & Parihar, A. S. (2016). A review on mechanical and tribological behaviors of stir cast copper–silicon carbide matrix composites. International Research Journal of Engineering and Technology, 3, 2658-2664.
  • Kandaş, H. (2018). Low velocity impact behavior of glass fiber reinforced polypropylene composites with different preloads (Unpublished master’s thesis). Dokuz Eylül University, İzmir, Turkey.
  • Rahim, F., Shah, S., Megat-Yusoff, P., Hussnain, S., Choudhry, R., & Hussain, M. (2024). Mechanical and viscoelastic properties of novel resin-infused thermoplastic tri-block copolymer 3D glass fabric composites. Polymer Testing, 108510. https://doi.org/10.1016/j.polymertesting.2024.108510
  • Özben, T. (2005). The effects of the support type and the material parameters on the elastic and elasto-plastic behaviors of thermoplastic laminated plates (Unpublished doctoral dissertation). University of Fırat, Elazığ, Turkey.
  • Gattinger, J., Kirsch, M., & Kirchebner, B. (2018). Flexible composite strands through extrusion of crimped fiber reinforced thermoplastic elastomers. Materials Today Communications, 15, 43–47.
  • Raji, M., Abdellaoui, H., Essabir, H., Kakou, C. A., Bouhfid, R., & El Kacem Qaiss, A. (2019). Prediction of the cyclic durability of woven-hybrid composites. In Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (pp. 27–62).
  • Balasubramanian, K., Sultan, M. T. H., & Rajeswari, N. (2018). Manufacturing techniques of composites for aerospace applications. In Sustainable Composites for Aerospace Applications (pp. 55–67).
  • Aleksendrić, D., & Carlone, P. (2015). Composite materials manufacturing. In Soft Computing in the Design and Manufacturing of Composite Materials (pp. 15–38).
  • Quanjin, M., Rejab, M. R. M., Idris, M. S., Zhang, B., & Kumar, N. M. (2019). Filament winding technique: SWOT analysis and applied favorable factors. SCIREA Journal of Mechanical Engineering, 3, 1-25.
  • Mallick, P. K. (2021). Thermoset matrix composites for lightweight automotive structures. In Materials, Design and Manufacturing for Lightweight Vehicles (pp. 229–263).
  • Mouritz, A. P. (2012). Manufacturing of fibre–polymer composite materials. In Introduction to Aerospace Materials (pp. 303–337).
  • Gajjar, T., Shah, D. B., Joshi, S. J., & Patel, K. M. (2020). Analysis of process parameters for composites manufacturing using vacuum infusion process. Journal of Manufacturing Processes, 21, 1244-1249.
  • Abdurohman, K., & Siahaan, M. (2018). Effect of mesh-peel ply variation on mechanical properties of E-glass composite by infusion vacuum method. Journal of Physics: Conference Series, 1005(1), 012009.
  • Razali, N., Mansor, M. R., Omar, G., Kamarulzaman, S. A. F. S., Zin, M. H., & Razali, N. (2021). Out-of-autoclave as a sustainable composites manufacturing process for aerospace applications. In Design for Sustainability: Green Materials and Processes (pp. 395–413).
  • Dai, D., & Fan, M. (2014). Wood fibres as reinforcements in natural fibre composites: Structure, properties, processing and applications. In Natural Fibre Composites: Materials, Processes and Applications (pp. 3–65).
  • Dumont, P., Martoïa, F., & Orgéas, L. (2023). Compression moulding. British Plastics and Rubber, 273–300.
  • De, B., Bera, M., Bhattacharjee, D., Ray, B. C., & Mukherjee, S. (2024). A comprehensive review on fiber-reinforced polymer composites: Raw materials to applications, recycling, and waste management. Progress in Materials Science, 146, 101326. https://doi.org/10.1016/j.pmatsci.2024.101326
  • Gayretli, B., Shanthar, R., Öpöz, T. T., & Abeykoon, C. (2024). Mechanical properties of LDPE and PS polymer matrix composites reinforced with GNP and CF — A critical review. International Journal of Lightweight Materials and Manufacture, 7(4), 572–596. https://doi.org/10.1016/j.ijlmm.2024.03.005
  • Wakeman, M. D., & Rudd, C. D. (2000). Compression molding of thermoplastic composites. In Comprehensive Composite Materials (pp. 915–963).
  • Wang, M., Guo, L., & Sun, H. (2019). Manufacture of biomaterials. In Encyclopedia of Biomedical Engineering (pp. 116–134).
  • Joshi, S. C. (2012). The pultrusion process for polymer matrix composites. In Manufacturing Techniques for Polymer Matrix Composites (PMCs) (pp. 381–413).
  • Riedel, U. (2012). Biocomposites: Long natural fiber-reinforced biopolymers. In Polymer Science: A Comprehensive Reference (pp. 295–315).
  • Goodship, V. (2016). Injection molding of thermoplastics. In Design and Manufacture of Plastic Components for Multifunctionality: Structural Composites, Injection Molding, and 3D Printing (pp. 103–170).
  • Rojas-Lema, S., Gomez-Caturla, J., Balart, R., Arrieta, M., & Garcia-Sanoguera, D. (2024). Development and characterization of thermoplastic zein biopolymers plasticized with glycerol suitable for injection molding. Industrial Crops and Products, 218, 119035. https://doi.org/10.1016/j.indcrop.2024.119035
  • Liu, S. J. (2012). Injection molding in polymer matrix composites. In Manufacturing Techniques for Polymer Matrix Composites (PMCs) (pp. 15–46).
  • Yüzbasi, N. S., & Graule, T. (2021). Colloid casting processes: Slip casting, centrifugal casting, and gel casting. In Encyclopedia of Materials: Technical Ceramics and Glasses (pp. 146–153).
  • Swift, K. G., & Booker, J. D. (2013). Casting processes. In Manufacturing Process Selection Handbook (pp. 61–91).
  • Eltawahni, H. A., Benyounis, K. Y., Twiname, E. R., & Mistler, R. E. (2019). Tape casting and lamination. In Reference Module in Materials Science and Materials Engineering.
  • Wagner, J. R., Mount, E. M., & Giles, H. F. (2014). Extrusion coating and lamination. In Elsevier eBooks (pp. 551–554).
  • Nur-E-Alam, M., Vasiliev, M., Yap, B. K., Islam, M. A., Fouad, Y., & Kiong, T. S. (2024). Design, fabrication, and physical properties analysis of laminated Low-E coated glass for retrofit window solutions. Energy and Buildings, 318, 114427. https://doi.org/10.1016/j.enbuild.2024.114427
  • Zulfiqar, S., Saad, A. A., Sharif, M. F. M., Samsudin, Z., Ali, M. Y. T., Ani, F. C., Ahmad, Z., & Abdullah, M. K. (2021). Alternative manufacturing process of 3-dimensional interconnect device using thermoforming process. Microelectronics Reliability, 127, 114373.
  • Riley, A. (2012). Plastics manufacturing processes for packaging materials. In Packaging Technology (pp. 310–360).
  • Dhakal, H. N., & Ismail, S. O. (2021). Design, manufacturing processes and their effects on bio-composite properties. In Sustainable Composites for Lightweight Applications (pp. 121–177).
  • He, X., Shi, Y., Kang, C., & Yu, T. (2017). Analysis and control of the compaction force in the composite prepreg tape winding process for rocket motor nozzles. Chinese Journal of Aeronautics, 30(2), 836–845.
  • Zaami, A., Baran, I., Bor, T. C., & Akkerman, R. (2020). New process optimization framework for laser assisted tape winding of composite pressure vessels: Controlling the unsteady bonding temperature. Materials & Design, 196, 109130. https://doi.org/10.1016/j.matdes.2020.109130
  • Pantelakis, S. G., & Baxevani, E. A. (2002). Optimization of the diaphragm forming process with regard to product quality and cost. Composites Part A: Applied Science and Manufacturing, 33(4), 459–470.
  • Codolini, A., Chen, S., Lawrence, G., Harper, L., & Sutcliffe, M. (2024). Characterization of process-induced variability in wrinkle defects during double diaphragm forming of non-crimp fabric. Composites Part B: Engineering, 281, 111549. https://doi.org/10.1016/j.compositesb.2024.111549
  • Kurtuluş, O. (2017). Experimental and numerical investigation of the open-hole effect on self-reinforced polypropylene based thermoplastic composite laminates (Unpublished master’s thesis). Uludağ University, Bursa, Turkey.
  • Kepir, Y., Günöz, A., & Kara, M. (2022). Repairing of damaged composite materials and self-healing composites. Turkish Journal of Engineering, 6(2), 149-155.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapı Malzemeleri
Bölüm Articles
Yazarlar

Zeynep Soydan 0009-0000-1302-3381

Fatma İrem Şahin 0000-0001-7670-8871

Nil Acaralı 0000-0003-4618-1540

Erken Görünüm Tarihi 28 Ekim 2024
Yayımlanma Tarihi 31 Ekim 2024
Gönderilme Tarihi 16 Nisan 2024
Kabul Tarihi 22 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 8 Sayı: 4

Kaynak Göster

APA Soydan, Z., Şahin, F. İ., & Acaralı, N. (2024). Advancements in polymeric matrix composite production: a review on methods and approaches. Turkish Journal of Engineering, 8(4), 677-686. https://doi.org/10.31127/tuje.1468998
AMA Soydan Z, Şahin Fİ, Acaralı N. Advancements in polymeric matrix composite production: a review on methods and approaches. TUJE. Ekim 2024;8(4):677-686. doi:10.31127/tuje.1468998
Chicago Soydan, Zeynep, Fatma İrem Şahin, ve Nil Acaralı. “Advancements in Polymeric Matrix Composite Production: A Review on Methods and Approaches”. Turkish Journal of Engineering 8, sy. 4 (Ekim 2024): 677-86. https://doi.org/10.31127/tuje.1468998.
EndNote Soydan Z, Şahin Fİ, Acaralı N (01 Ekim 2024) Advancements in polymeric matrix composite production: a review on methods and approaches. Turkish Journal of Engineering 8 4 677–686.
IEEE Z. Soydan, F. İ. Şahin, ve N. Acaralı, “Advancements in polymeric matrix composite production: a review on methods and approaches”, TUJE, c. 8, sy. 4, ss. 677–686, 2024, doi: 10.31127/tuje.1468998.
ISNAD Soydan, Zeynep vd. “Advancements in Polymeric Matrix Composite Production: A Review on Methods and Approaches”. Turkish Journal of Engineering 8/4 (Ekim 2024), 677-686. https://doi.org/10.31127/tuje.1468998.
JAMA Soydan Z, Şahin Fİ, Acaralı N. Advancements in polymeric matrix composite production: a review on methods and approaches. TUJE. 2024;8:677–686.
MLA Soydan, Zeynep vd. “Advancements in Polymeric Matrix Composite Production: A Review on Methods and Approaches”. Turkish Journal of Engineering, c. 8, sy. 4, 2024, ss. 677-86, doi:10.31127/tuje.1468998.
Vancouver Soydan Z, Şahin Fİ, Acaralı N. Advancements in polymeric matrix composite production: a review on methods and approaches. TUJE. 2024;8(4):677-86.
Flag Counter