Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 2, 394 - 401
https://doi.org/10.31127/tuje.1513761

Abstract

References

  • Swolfs, Y., Gorbatikh, L., & Verpoest, I. (2014). Fibre hybridisation in polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 67, 181–200.
  • Monticeli, F. M., Almeida, J. H. S., Neves, R. M., Ornaghi, F. G., & Ornaghi, H. L. (2020). On the 3D void formation of hybrid carbon/glass fiber composite laminates: A statistical approach. Composites Part A: Applied Science and Manufacturing, 137, 106036.
  • Zhang, K., Chaisombat, S., He, S., & Wang, C. H. (2012). Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Materials & Design, 36, 75–80.
  • Guermazi, N., Haddar, N., Elleuch, K., & Ayedi, H. F. (2014). Investigations on the fabrication and characterization of glass/epoxy, carbon/epoxy and hybrid composites used in the reinforcement and repair of aeronautic structures. Materials & Design, 56, 714–724.
  • Ikbal, M. H., Ahmed, A., Qingtao, W., Shuai, Z., & Wei, L. (2017). Hybrid composites made of unidirectional T600S carbon and E-glass fabrics under quasi-static loading. Journal of Industrial Textiles, 46, 1511–1535.
  • Schmidt, T. M., Goss, T. M., Amico, S. C., & Lekakou, C. (2009). Permeability of hybrid reinforcements and mechanical properties of their composites molded by resin transfer molding. Journal of Reinforced Plastics and Composites, 28, 2839–2850.
  • Elamvazhudi, B., & Gopalakannan, S. (2024). Low-velocity impact and compression after impact behavior of nanoparticles-modified polymer composites. Journal of Reinforced Plastics and Composites, 43(23–24), 1340–1355.
  • Vasudevan, A., Senthil Kumaran, S., Naresh, K., & Velmurugan, R. (2019). Layer-wise damage prediction in carbon/Kevlar/S-glass/E-glass fibre reinforced epoxy hybrid composites under low-velocity impact loading using advanced 3D computed tomography. International Journal of Crashworthiness, 24(0), 1–15.
  • Cho, J., Joshi, M. S., & Sun, C. T. (2006). Effect of inclusion size on mechanical properties of polymeric composites with micro and nanoparticles. Composites Science and Technology, 66, 1941–1952.
  • Zheng, Y., & Ning, R. (2003). Effects of nanoparticles SiO2 on the performance of nanocomposites. Materials Letters, 57, 2940–2944.
  • Palmeri, M. J., Putz, K. W., & Brinson, L. C. (2010). Sacrificial bonds in stacked-cup carbon nanofibres: Biomimetic toughening mechanisms for composite systems. ACS Nano, 4, 4256–4264.
  • Bortz, D., Merino, C., & Martin-Gullon, I. (2011). Carbon nanofibres enhance the fracture toughness and fatigue performance of a structural epoxy system. Composites Science and Technology, 71, 31–38.
  • Ranjbar, M., & Feli, S. (2019). Mechanical and low-velocity impact properties of epoxy composite beams reinforced by MWCNTs. Journal of Composite Materials, 53, 693–705.
  • Mikhalchan, A., Gspann, T., & Windle, A. (2016). Aligned carbon nanotube–epoxy composites: The effect of nanotube organization on strength, stiffness, and toughness. Journal of Materials Science, 51, 10005–10025.
  • Alsaadi, M., & Erkliğ, A. (2018). Effect of perlite particle contents on delamination toughness of S-glass fibre reinforced epoxy matrix composites. Composites Part B, 141, 182–190.
  • Manjunatha, C. M., Taylor, A. C., Kinloch, A. J., & Sprenger, S. (2009). The tensile fatigue behavior of a GFRP composite with rubber particle modified epoxy matrix. Journal of Reinforced Plastics and Composites, 29, 2170–2183.
  • Nguyen, T. A., Pham, T. M. H., Dang, T. H., Do, T. H., & Nguyen, Q. T. (2020). Study on mechanical properties and fire resistance of epoxy nanocomposite reinforced with environmentally friendly additive: Nanoclay I.30E. Journal of Chemistry, 2020.
  • Davis, D. C., Wilkerson, J., Zhu, J., & Ayewah, D. (2010). Improvements in mechanical properties of a carbon fibre epoxy composite using nanotube science and technology. Composite Structures, 92, 2653–2662.
  • Ho, M.-W., Lam, C.-K., Lau, K.-T., Ng, D. H. L., & Hui, D. (2006). Mechanical properties of epoxy-based composites using nanoclays. Composite Structures, 75, 415–421.
  • Fu, S., Sun, Z., Huang, P., Li, Y., & Hu, N. (2019). Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science, 1, 2–30.
  • Kedar, S., Pandya, Veerraju, C., & Naik, N. K. (2011). Hybrid composites made of carbon and glass woven fabrics under quasi-static loading. Materials & Design, 32, 4094–4099.
  • Dong, C., & Davies, I. J. (2015). Flexural strength of bidirectional hybrid epoxy composites reinforced by E-glass and T700S carbon fibres. Composites Part B, 72, 65–71.
  • Özbek, Ö., Bozkurt, Ö. Y., & Erkliğ, A. (2020). Low velocity impact behaviors of basalt/epoxy reinforced composite laminates with different fiber orientations. Turkish Journal of Engineering, 4(4), 197–202.
  • Marszałek, J., Stadnicki, J., & Danielczyk, P. (2020). Finite element model of laminate construction element with multi-phase microstructure. Science and Engineering of Composite Materials, 27(1), 405–414.
  • Eser, M. M., & Can, H. (2022). Investigation of the effects of using steel cross and reinforced concrete shears earthquake performance in building. Engineering Applications, 1(2), 157–162.
  • Juraev, D. A., Elsayed, E. E., Bulnes, J. J. D., Agarwal, P., & Saeed, R. K. (2023). History of ill-posed problems and their application to solve various mathematical problems. Engineering Applications, 2(3), 279–290.
  • Zor, M. M., Kesim, S., Erbakan, B., Tülüce, F., Yoloğlu, A., & Çakır, K. (2022). Direct pouring system design and optimization in steel castings. Engineering Applications, 1(2), 124–131.
  • Elamvazhudi, B., & Boodala, D. (2023). Ballistic impact study on fibre reinforced polymer composites using FEA. Materials Today: Proceedings.https://doi.org/10.1016/j.matpr.2023.02.135
  • Tabrizi, A., Kefal, A., Zanjani, J. S. M., Akalin, C., & Yildiz, M. (2019). Experimental and numerical investigation on fracture behavior of glass/carbon fiber hybrid composites using acoustic emission method and refined zigzag theory. Composite Structures, 223, 110971.
  • Kaybal, H. B. (2021). An experimental study on interlaminar shear strength and fracture toughness: Carbon fiber reinforced epoxy composites enhanced with the CaCO3 nanoparticles. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 777–783.
  • Biliz, İ., & Çelik, Y. H. (2022). Investigation of mechanical properties of layered composites formed from glass, carbon, and aramid fibers and aluminum plates. European Journal of Technique, 12(2), 117–122.
  • Köken, E., & Kadakci Koca, T. (2023). A comparative study to estimate the mode I fracture toughness of rocks using several soft computing techniques. Turkish Journal of Engineering, 7(4), 296–305.
  • Coronado, P., Argüelles, A., Viña, J., Bonhomme, J., & Mollón, V. (2015). Influence on the delamination phenomenon of matrix type and thermal variations in unidirectional carbon fibre epoxy composites. Polymer Composites, 36, 747–755.
  • Sprenger, S. (2013). Epoxy resin composites with surface-modified silicon dioxide nanoparticles: A review. Journal of Applied Polymer Science, 130, 1421–1428.

Finite Element Failure Analysis on CGFRP Laminates

Year 2025, Volume: 9 Issue: 2, 394 - 401
https://doi.org/10.31127/tuje.1513761

Abstract

This research focuses on comprehensive analysis on investigating the interlaminar fracture toughness and displacement behaviour of carbon and glass fiber reinforced hybrid polymer composites utilizing epoxy matrices. Delamination is the separation of layers within composite materials and interlaminar fracture toughness are an essential quality of measures that indicates the ability of a material to resist delamination. Predicting and preventing the failure of hybrid composites requires an understanding of their interlaminar fracture toughness values. Since delamination is a common failure mode of composite materials, it strongly affects the mechanical properties and load carrying ability of the structure. Such that assessing its interlaminar fracture toughness allows engineers to anticipate potential points of weakness, and prevent these areas from becoming problematic through any number of techniques designed to combat delamination. In hybrid composites, the capacity for energy dissipation and fracture in the matrix must be well evidenced before predicting structural integrity. This paper applies ANSYS simulation to model and evaluate the effects of five combinations of hybrid laminates, on both fracture toughness and displacement characteristics, to prove stress mitigation. The specific area that was researched involved fibre stacking sequences, fibre orientations, fibre types and thickness of lamina in an attempt to analyse the absorbent impact toughness of the different laminates. The parameters of interest are examined to not only determine the level of the interlaminar fracture toughness but also analyze the structure’s displacement fields. The results will benefit the field of composite mechanics in gaining a better understanding of composite designs for the integration of composite structures into new generations of multipurpose and high fracture resisting materials for practical applications in engineering.

Ethical Statement

This is a research article

References

  • Swolfs, Y., Gorbatikh, L., & Verpoest, I. (2014). Fibre hybridisation in polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 67, 181–200.
  • Monticeli, F. M., Almeida, J. H. S., Neves, R. M., Ornaghi, F. G., & Ornaghi, H. L. (2020). On the 3D void formation of hybrid carbon/glass fiber composite laminates: A statistical approach. Composites Part A: Applied Science and Manufacturing, 137, 106036.
  • Zhang, K., Chaisombat, S., He, S., & Wang, C. H. (2012). Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Materials & Design, 36, 75–80.
  • Guermazi, N., Haddar, N., Elleuch, K., & Ayedi, H. F. (2014). Investigations on the fabrication and characterization of glass/epoxy, carbon/epoxy and hybrid composites used in the reinforcement and repair of aeronautic structures. Materials & Design, 56, 714–724.
  • Ikbal, M. H., Ahmed, A., Qingtao, W., Shuai, Z., & Wei, L. (2017). Hybrid composites made of unidirectional T600S carbon and E-glass fabrics under quasi-static loading. Journal of Industrial Textiles, 46, 1511–1535.
  • Schmidt, T. M., Goss, T. M., Amico, S. C., & Lekakou, C. (2009). Permeability of hybrid reinforcements and mechanical properties of their composites molded by resin transfer molding. Journal of Reinforced Plastics and Composites, 28, 2839–2850.
  • Elamvazhudi, B., & Gopalakannan, S. (2024). Low-velocity impact and compression after impact behavior of nanoparticles-modified polymer composites. Journal of Reinforced Plastics and Composites, 43(23–24), 1340–1355.
  • Vasudevan, A., Senthil Kumaran, S., Naresh, K., & Velmurugan, R. (2019). Layer-wise damage prediction in carbon/Kevlar/S-glass/E-glass fibre reinforced epoxy hybrid composites under low-velocity impact loading using advanced 3D computed tomography. International Journal of Crashworthiness, 24(0), 1–15.
  • Cho, J., Joshi, M. S., & Sun, C. T. (2006). Effect of inclusion size on mechanical properties of polymeric composites with micro and nanoparticles. Composites Science and Technology, 66, 1941–1952.
  • Zheng, Y., & Ning, R. (2003). Effects of nanoparticles SiO2 on the performance of nanocomposites. Materials Letters, 57, 2940–2944.
  • Palmeri, M. J., Putz, K. W., & Brinson, L. C. (2010). Sacrificial bonds in stacked-cup carbon nanofibres: Biomimetic toughening mechanisms for composite systems. ACS Nano, 4, 4256–4264.
  • Bortz, D., Merino, C., & Martin-Gullon, I. (2011). Carbon nanofibres enhance the fracture toughness and fatigue performance of a structural epoxy system. Composites Science and Technology, 71, 31–38.
  • Ranjbar, M., & Feli, S. (2019). Mechanical and low-velocity impact properties of epoxy composite beams reinforced by MWCNTs. Journal of Composite Materials, 53, 693–705.
  • Mikhalchan, A., Gspann, T., & Windle, A. (2016). Aligned carbon nanotube–epoxy composites: The effect of nanotube organization on strength, stiffness, and toughness. Journal of Materials Science, 51, 10005–10025.
  • Alsaadi, M., & Erkliğ, A. (2018). Effect of perlite particle contents on delamination toughness of S-glass fibre reinforced epoxy matrix composites. Composites Part B, 141, 182–190.
  • Manjunatha, C. M., Taylor, A. C., Kinloch, A. J., & Sprenger, S. (2009). The tensile fatigue behavior of a GFRP composite with rubber particle modified epoxy matrix. Journal of Reinforced Plastics and Composites, 29, 2170–2183.
  • Nguyen, T. A., Pham, T. M. H., Dang, T. H., Do, T. H., & Nguyen, Q. T. (2020). Study on mechanical properties and fire resistance of epoxy nanocomposite reinforced with environmentally friendly additive: Nanoclay I.30E. Journal of Chemistry, 2020.
  • Davis, D. C., Wilkerson, J., Zhu, J., & Ayewah, D. (2010). Improvements in mechanical properties of a carbon fibre epoxy composite using nanotube science and technology. Composite Structures, 92, 2653–2662.
  • Ho, M.-W., Lam, C.-K., Lau, K.-T., Ng, D. H. L., & Hui, D. (2006). Mechanical properties of epoxy-based composites using nanoclays. Composite Structures, 75, 415–421.
  • Fu, S., Sun, Z., Huang, P., Li, Y., & Hu, N. (2019). Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science, 1, 2–30.
  • Kedar, S., Pandya, Veerraju, C., & Naik, N. K. (2011). Hybrid composites made of carbon and glass woven fabrics under quasi-static loading. Materials & Design, 32, 4094–4099.
  • Dong, C., & Davies, I. J. (2015). Flexural strength of bidirectional hybrid epoxy composites reinforced by E-glass and T700S carbon fibres. Composites Part B, 72, 65–71.
  • Özbek, Ö., Bozkurt, Ö. Y., & Erkliğ, A. (2020). Low velocity impact behaviors of basalt/epoxy reinforced composite laminates with different fiber orientations. Turkish Journal of Engineering, 4(4), 197–202.
  • Marszałek, J., Stadnicki, J., & Danielczyk, P. (2020). Finite element model of laminate construction element with multi-phase microstructure. Science and Engineering of Composite Materials, 27(1), 405–414.
  • Eser, M. M., & Can, H. (2022). Investigation of the effects of using steel cross and reinforced concrete shears earthquake performance in building. Engineering Applications, 1(2), 157–162.
  • Juraev, D. A., Elsayed, E. E., Bulnes, J. J. D., Agarwal, P., & Saeed, R. K. (2023). History of ill-posed problems and their application to solve various mathematical problems. Engineering Applications, 2(3), 279–290.
  • Zor, M. M., Kesim, S., Erbakan, B., Tülüce, F., Yoloğlu, A., & Çakır, K. (2022). Direct pouring system design and optimization in steel castings. Engineering Applications, 1(2), 124–131.
  • Elamvazhudi, B., & Boodala, D. (2023). Ballistic impact study on fibre reinforced polymer composites using FEA. Materials Today: Proceedings.https://doi.org/10.1016/j.matpr.2023.02.135
  • Tabrizi, A., Kefal, A., Zanjani, J. S. M., Akalin, C., & Yildiz, M. (2019). Experimental and numerical investigation on fracture behavior of glass/carbon fiber hybrid composites using acoustic emission method and refined zigzag theory. Composite Structures, 223, 110971.
  • Kaybal, H. B. (2021). An experimental study on interlaminar shear strength and fracture toughness: Carbon fiber reinforced epoxy composites enhanced with the CaCO3 nanoparticles. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 10(2), 777–783.
  • Biliz, İ., & Çelik, Y. H. (2022). Investigation of mechanical properties of layered composites formed from glass, carbon, and aramid fibers and aluminum plates. European Journal of Technique, 12(2), 117–122.
  • Köken, E., & Kadakci Koca, T. (2023). A comparative study to estimate the mode I fracture toughness of rocks using several soft computing techniques. Turkish Journal of Engineering, 7(4), 296–305.
  • Coronado, P., Argüelles, A., Viña, J., Bonhomme, J., & Mollón, V. (2015). Influence on the delamination phenomenon of matrix type and thermal variations in unidirectional carbon fibre epoxy composites. Polymer Composites, 36, 747–755.
  • Sprenger, S. (2013). Epoxy resin composites with surface-modified silicon dioxide nanoparticles: A review. Journal of Applied Polymer Science, 130, 1421–1428.
There are 34 citations in total.

Details

Primary Language English
Subjects Materials Science and Technologies
Journal Section Articles
Authors

Elamvazhudi B 0000-0003-1302-6392

Arul Karthikeyan O 0009-0004-5115-2239

Dhinagaran S 0009-0007-9084-2912

Kathiravan E 0009-0006-0344-9489

Navinkumar S 0009-0002-9853-9102

Publication Date
Submission Date July 10, 2024
Acceptance Date August 2, 2024
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA B, E., O, A. K., S, D., E, K., et al. (n.d.). Finite Element Failure Analysis on CGFRP Laminates. Turkish Journal of Engineering, 9(2), 394-401. https://doi.org/10.31127/tuje.1513761
AMA B E, O AK, S D, E K, S N. Finite Element Failure Analysis on CGFRP Laminates. TUJE. 9(2):394-401. doi:10.31127/tuje.1513761
Chicago B, Elamvazhudi, Arul Karthikeyan O, Dhinagaran S, Kathiravan E, and Navinkumar S. “Finite Element Failure Analysis on CGFRP Laminates”. Turkish Journal of Engineering 9, no. 2 n.d.: 394-401. https://doi.org/10.31127/tuje.1513761.
EndNote B E, O AK, S D, E K, S N Finite Element Failure Analysis on CGFRP Laminates. Turkish Journal of Engineering 9 2 394–401.
IEEE E. B, A. K. O, D. S, K. E, and N. S, “Finite Element Failure Analysis on CGFRP Laminates”, TUJE, vol. 9, no. 2, pp. 394–401, doi: 10.31127/tuje.1513761.
ISNAD B, Elamvazhudi et al. “Finite Element Failure Analysis on CGFRP Laminates”. Turkish Journal of Engineering 9/2 (n.d.), 394-401. https://doi.org/10.31127/tuje.1513761.
JAMA B E, O AK, S D, E K, S N. Finite Element Failure Analysis on CGFRP Laminates. TUJE.;9:394–401.
MLA B, Elamvazhudi et al. “Finite Element Failure Analysis on CGFRP Laminates”. Turkish Journal of Engineering, vol. 9, no. 2, pp. 394-01, doi:10.31127/tuje.1513761.
Vancouver B E, O AK, S D, E K, S N. Finite Element Failure Analysis on CGFRP Laminates. TUJE. 9(2):394-401.
Flag Counter