Research Article
BibTex RIS Cite

Optimized Biodiesel Production from Dunaliella Salina, A Unicellular Green Algae through Artificial Neural Network

Year 2025, Volume: 9 Issue: 2, 179 - 188
https://doi.org/10.31127/tuje.1525407

Abstract

Renewable energy is a sure bet for energy needs in the future and algae biofuels for instance can go a long way to provide the energy needed. In this work, the process of obtaining the bio-oil from Dunaliella Salina, a hypersaline, unicellular microalga, having greenish-orange color, is described. The microalgae were cultured in f/2 nutrition medium supplemented with carbon dioxide and vitamins and trace metals. 650 mL of bio-oil were obtained, where ultrasonic extraction frequency of 60 Hz was carried out on the sample for a period of 90 minutes to isolate the bio-oil. The bio-oil was then processed to biodiesel through a single stage base-catalyzed transesterification using methanol and sodium hydroxide as the catalyst. This procedure produced pure Dunaliella Salina biodiesel with an extraction efficiency of 93%. The prediction tool ANN was utilized with trainlm algorithm which predicted the yield which was similar to experimental yield with error percentage of 0.09016. Nuclear Magnetic Resonance (NMR) spectral analysis, Gas Chromatography-Mass Spectrometry (GCMS), and Fourier Transform Infrared Spectroscopy (FTIR) are the three analysis performed on the produced biodiesel. This work paves the path for more research and development in the field of algae biofuels by demonstrating the effectiveness of Dunaliella Salina as a sustainable feedstock for biofuel production and offering a thorough explanation of the mechanisms involved in its conversion to biodiesel.

Project Number

Nil

References

  • Murugesan, P., Hoang, A. T., Venkatesan, E. P., Kumar, D. S., Balasubramanian, D., & Le, A. T. (2022). Role of hydrogen in improving performance and emission characteristics of homogeneous charge compression ignition engine fueled with graphite oxide nanoparticle-added microalgae biodiesel/diesel blends. International Journal of Hydrogen Energy, 47 (88), 37617–34. https://doi.org/10.1016/J.IJHYDENE.2021.08.107
  • Venkatesan, H., Sivamani, S., Bhutoria, K., & Vora, H. H. (2019). Assessment of waste plastic oil blends in performance, combustion and emission parameters in direct injection compression ignition engine. International Journal of Ambient Energy, 40(2), 170–8. https://doi.org/10.1080/01430750.2017.1381155
  • Chitradevi, V., & Balu Pandian. (2024). An experimental study on performance, emissions, and combustion characteristics of a CI engine running on Citrullus Colocynthis biodiesel blends. Journal of Thermal Engineering, 10(4), 954−960.
  • Ogunkunle, O., & Ahmed, N. A. (2019). A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines, Energy Reports, 5, 1560–1579. https://doi.org/10.1016/J.EGYR.2019.10.028
  • Demirbas, A. (2009). Political, economic and environmental impacts of biofuels: A review. Applied Energy, 86, (1) 108–117. https://doi.org/10.1016/J.APENERGY.2009.04.036
  • Okcu, G. D. (2022). Microalgae biodiesel production: a solution to increasing energy demands in Turkey. Biofuels, 13(1), 77–93. https://doi.org/10.1080/17597269.2019.1637070
  • Balat, M. (2011). Potential alternatives to edible oils for biodiesel production - A review of current work. Energy Conversition Management, 52 (2), 1479–1492. https://doi.org/10.1016/J.ENCONMAN.2010.10.011
  • Atabani, E., Silitonga, A. S., Badruddin, I. A., Mahlia. T. M. I., Masjuki, H. H., & Mekhilef, S. (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics, Renewable and Sustainable Energy Reviews, 16 (4), 2070–2093. https://doi.org/10.1016/J.RSER.2012.01.003
  • Ahmad, L., Yasin, N. H. M., Derek, C. J. C., & Lim, J. K. (2011). Microalgae as a sustainable energy source for biodiesel production: A review. Renewable and Sustainable Energy Reviews. 15(1), 584–593, 2011. https://doi.org/10.1016/J.RSER.2010.09.018
  • Abdel-Aal, E. I., Haroon, A. M., & Mofeed, J. (2015). Successive solvent extraction and GC–MS analysis for the evaluation of the phytochemical constituents of the filamentous green alga Spirogyra longata, Egypt. J. Aquatic Res, 41 (3), 233–246. https://doi.org/10.1016/J.EJAR.2015.06.001
  • Jackson, M. A., & Eller, F. J. (2006). Isolation of long-chain aliphatic alcohols from beeswax using lipase-catalyzed methanolysis in supercritical carbon dioxide, Journal of Supercritical Fluids 37 (2), 173–177. https://doi.org/10.1016/J.SUPFLU.2005.08.008
  • Manzano-Agugliaro, F., Sanchez-Muros, M. J., Barroso, F. G., Martı´nez-Sa´nchez, A., Rojo, S., & Pe´rez-Ban˜o´n, C. (2012), Insects for biodiesel production, Renewable and Sustainable Energy Reviews, 16 (6), 3744–3753. https://doi.org/10.1016/J.RSER.2012.03.017
  • Naureen, R., Tariq, M., Yusoff, I., Chowdhury, A. J. K., & Ashraf, M. A. (2015) Synthesis, spectroscopic and chromatographic studies of sunflower oil biodiesel using optimized base catalyzed methanolysis. Saudi Journal of Biological Science, 22 (3), 332–339. https://doi.org/10.1016/J.SJBS.2014.11.017
  • Ramadhas, A. S., Jayaraj, S., & Muraleedharan, C. (2006). Theoretical modeling and experimental studies on biodiesel-fueled engine, Renewable Energy, 31 (11), 1813–1826. https://doi.org/10.1016/J.RENENE.2005.09.011
  • Asokan, M. A., Senthur Prabu, S., Shikhar Kamesh., & Wasiuddin Khan. (2018). Performance, combustion and emission characteristics of diesel engine fueled with papaya and watermelon seed oil bio-diesel/diesel blends. Energy, 145, 238-245. https://doi.org/10.1016/J.ENERGY.2017.12.140
  • Mattana Santasnachok., Charoen Chinwanitcharoen., Wirogana Ruengphrathuengsuka., & Ekkachai Sutheerasak. (2023), Diesel-engine generator tests fueled with ethyl and methyl esters of palm oil as catalyzed by potassium hydroxide, Energy Reports, 9(10), 48-55. https://doi.org/10.1016/J.EGYR.2023.05.061.
  • Venkatesan, H., Sivamani, S., Premkumar, & T., Tharun, P. (2017). Reduction of Exhaust Emissions Using a Nanometallic Enriched Lemongrass Biodiesel Blend. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39 (21), 2065–2071. https://doi.org/10.1080/15567036.2017.139549
  • Hariram, V., Saravanan, A., Nadanakumar, V., Vinoth Kumar, M., Balachandar, M., John Godwin, J., Seralathan, S., & Vasudev, K. L. (2022). Optimized Grapeseed Biodiesel Production and its Effect on the CI engines Combustion Characteristics at Variable Compression Ratios. International Journal of Vehicle Structures & Systems, 14(2), 242-256. https://DOI.ORG/10.4273/IJVSS.14.2.19
  • Panneerselvam, N., Murugesan, A., Vijayakumar, C & Subramaniam, D. (2016). Optimization of biodiesel produced from watermelon (Citrullus vulgaris) using batch-type production unit. Energy sources, Part A: Recovery, Utilization, and Environmental Effects, 38 (16), 2343–2348. https://doi.org/10.1080/15567036.2015.1048389
  • Betiku, E., Osunleke, A., Odude, V., Bamimore, A., Oladipo, B., Okeleye, A., & Ishola, N. (2021) Performance evaluation of adaptive neuro-fuzzy inference system, artificial neural network and response surface methodology in modeling biodiesel synthesis from palm kernel oil by transesterification, Biofuels, 12 (3), 339–354. https://doi.org/10.1080/17597269.2018.1472980
  • Balaji Dhanapal., Hariram Venkatesan., & Balachandar Moorthy. (2024). Synergetic effect of hydrogen supplementation with waste cooking oil biodiesel – An assessment of the emission, combustion and performance parameters of a compression ignition engine. International Journal of Hydrogen Energy, 49 (B), 1292–1302. https://doi.org/10.1016/j.ijhydene.2023.11.052
  • Betiku, E., Omilakin, O. R., Ajala, S. O., Okeleye, A. A., Taiwo, A. E., & Solomon, B. O. (2014) Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: A case of non-edible neem (Azadirachta indica) seed oil biodiesel synthesis, Energy, 72, 266–273. https://doi.org/10.1016/J.ENERGY.2014.05.033
  • Stamenković, O. S., Rajković, K., Veličković, A. V., Milić, P. S., & Veljković, V. B. (2013), Optimization of base-catalyzed ethanolysis of sunflower oil by regression and artificial neural network models, Fuel Processing Technlology, 114, 101–108. https://doi.org/10.1016/J.FUPROC.2013.03.038
  • Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes, J. Clin. Epidemiol, 49 (11), 1225–1231. https://doi.org/10.1016/S0895-4356(96)00002-9
  • Lam, M. K., & Lee, K. T. (2012). Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances, 30(3), 673-690. https://doi.org/10.1016/J.BIOTECHADV.2011.11.008
  • Lam, M. K., Lee, K. T., & Mohamed, A. R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28(4), 500-518. https://doi.org/10.1016/J.BIOTECHADV.2010.03.002
  • Tang, D., Han, W., Li, P., Miao, X., & Zhong, J. (2011). CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 102 (3), 3071-3076. DOI: 10.1016/J.BIORTECH.2010.10.047. https://doi.org/10.1016/j.biortech.2010.10.047
  • Talebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683-710. https://doi.org/10.1016/J.APENERGY.2012.11.061
  • Godwin John, J., Hariram, V., & Seralathan, S. (2018). Emission reduction using improved fuel properties of algal oil biodiesel and its blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40 (1)1, 45-53. https://doi.org/10.1080/15567036.2017.1405108
  • Lee, J. H., Lee, T. H., & Park, J. M. (2010). Biodiesel production from Nannochloropsis microalgae: A review. Biotechnology Advances, 28(5), 526-535. https://doi.org/10.1016/J.BIOMBIOE.2024.107240
  • Halim, R., Danquah, M. K., & Webley, P. A. (2012). Oil extraction from microalgae for biodiesel production. Bioresource Technology, 102(1), 178-185. https://doi.org/10.1016/J.BIORTECH.2010.06.136
  • Amin, N. A. S., & Lee, K. T. (2009). Biodiesel production from microalgae as renewable energy: A review. Renewable and Sustainable Energy Reviews, 13(3), 683-693. https://doi.org/10.1016/J.FUEL.2024.131547
  • Turan., Mesci, N. G., & Ozgonenel, B. (2011). Artificial neural network (ANN) approach for modeling Zn(II) adsorption from leachate using a new biosorbent. Chemical Engineering Journal, 173, 98–105. https://doi.org/10.1016/J.CEJ.2011.07.042
  • Ekkachai Sutheerasak., Worachest Pirompugd., & Sathaporn Chuepeng. (2023). The performance and emission of a generator-diesel engine fueled with palm oil methyl ester combined with carbureting biobutanol, Energy Reports, 9(3), 210-218. https://doi.org/10.1016/J.EGYR.2022.12.109
  • Oyetola Ogunkunle., & Noor A, Ahmed. (2020), Exhaust emissions and engine performance analysis of a marine diesel engine fuelledwith Parinari polyandra biodiesel–diesel blends, Energy Reports, 6: 2999-3007. https://doi.org/10.1016/j.egyr.2020.10.070
  • Latchubugata, C. S., Kondapaneni, R. V., Patluri, K. K., Virendra, U., & Vedantam, S. (2018). Kinetics and optimization studies using Response Surface Methodology in biodiesel production using heterogeneous catalyst, Chemical Engineering Research and Design, 135, 129–139. https://doi.org/10.1016/J.CHERD.2018.05.022
  • Serpil Savcı. (2017), Treatment of Biodiesel Wastewater Using Yellow Mustard Seeds, Turkish Journal of Engineering, 1(1), 11 - 17, https://doi.org/10.31127/TUJE.315927
  • Rocabruno-Vald´es, C.I., Ramírez-Verduzco, L.F., & Hern´andez, J.A. (2015). Artificial neural network models to predict density, dynamic viscosity, and cetane number of biodiesel. Fuel, 147, 9–17. https://doi.org/10.1016/J.FUEL.2015.01.024
  • Gul Muhammad., Ange Douglas Potchamyou Ngatcha., Yongkun Lv., Wenlong Xiong., Yaser A. El-Badry., Eylem Asmatulu., Jingliang Xu., & Md Asraful Alam. (2021). Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network, Renewable Energy, 184, 753-764. https://doi.org/10.1016/J.RENENE.2021.11.091
  • Mehmet Çağatay., & Suleyman Karacan. (2022), Multivariable generalized predictive control of reactive distillation column process for biodiesel production, Turkish Journal of Engineering, 6 (1), 40 – 53. https://doi.org/10.31127/TUJE.801441
  • Venkatesan, H., Sivamani, S., Bhutoria, K., & Vora, H. H. (2019). Assessment of Waste Plastic Oil Blends in Performance, Combustion and Emission Parameters in Direct Injection Compression Ignition Engine. International Journal of Ambient Energy, 40 (2): 170–178. https://doi.org/10.1080/01430750.2017.1381155
  • Alam, F., Mobin, S., & Chowdhury, H. (2015). Third generation biofuel from algae. Procedia Engineering, 105, 763-768. https://doi.org/10.1016/j.proeng.2015.05.068
  • Gouveia, L., & Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology, 36(2), 269-274. https://doi.org/10.1007/s10295-008-0495-6
Year 2025, Volume: 9 Issue: 2, 179 - 188
https://doi.org/10.31127/tuje.1525407

Abstract

Project Number

Nil

References

  • Murugesan, P., Hoang, A. T., Venkatesan, E. P., Kumar, D. S., Balasubramanian, D., & Le, A. T. (2022). Role of hydrogen in improving performance and emission characteristics of homogeneous charge compression ignition engine fueled with graphite oxide nanoparticle-added microalgae biodiesel/diesel blends. International Journal of Hydrogen Energy, 47 (88), 37617–34. https://doi.org/10.1016/J.IJHYDENE.2021.08.107
  • Venkatesan, H., Sivamani, S., Bhutoria, K., & Vora, H. H. (2019). Assessment of waste plastic oil blends in performance, combustion and emission parameters in direct injection compression ignition engine. International Journal of Ambient Energy, 40(2), 170–8. https://doi.org/10.1080/01430750.2017.1381155
  • Chitradevi, V., & Balu Pandian. (2024). An experimental study on performance, emissions, and combustion characteristics of a CI engine running on Citrullus Colocynthis biodiesel blends. Journal of Thermal Engineering, 10(4), 954−960.
  • Ogunkunle, O., & Ahmed, N. A. (2019). A review of global current scenario of biodiesel adoption and combustion in vehicular diesel engines, Energy Reports, 5, 1560–1579. https://doi.org/10.1016/J.EGYR.2019.10.028
  • Demirbas, A. (2009). Political, economic and environmental impacts of biofuels: A review. Applied Energy, 86, (1) 108–117. https://doi.org/10.1016/J.APENERGY.2009.04.036
  • Okcu, G. D. (2022). Microalgae biodiesel production: a solution to increasing energy demands in Turkey. Biofuels, 13(1), 77–93. https://doi.org/10.1080/17597269.2019.1637070
  • Balat, M. (2011). Potential alternatives to edible oils for biodiesel production - A review of current work. Energy Conversition Management, 52 (2), 1479–1492. https://doi.org/10.1016/J.ENCONMAN.2010.10.011
  • Atabani, E., Silitonga, A. S., Badruddin, I. A., Mahlia. T. M. I., Masjuki, H. H., & Mekhilef, S. (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics, Renewable and Sustainable Energy Reviews, 16 (4), 2070–2093. https://doi.org/10.1016/J.RSER.2012.01.003
  • Ahmad, L., Yasin, N. H. M., Derek, C. J. C., & Lim, J. K. (2011). Microalgae as a sustainable energy source for biodiesel production: A review. Renewable and Sustainable Energy Reviews. 15(1), 584–593, 2011. https://doi.org/10.1016/J.RSER.2010.09.018
  • Abdel-Aal, E. I., Haroon, A. M., & Mofeed, J. (2015). Successive solvent extraction and GC–MS analysis for the evaluation of the phytochemical constituents of the filamentous green alga Spirogyra longata, Egypt. J. Aquatic Res, 41 (3), 233–246. https://doi.org/10.1016/J.EJAR.2015.06.001
  • Jackson, M. A., & Eller, F. J. (2006). Isolation of long-chain aliphatic alcohols from beeswax using lipase-catalyzed methanolysis in supercritical carbon dioxide, Journal of Supercritical Fluids 37 (2), 173–177. https://doi.org/10.1016/J.SUPFLU.2005.08.008
  • Manzano-Agugliaro, F., Sanchez-Muros, M. J., Barroso, F. G., Martı´nez-Sa´nchez, A., Rojo, S., & Pe´rez-Ban˜o´n, C. (2012), Insects for biodiesel production, Renewable and Sustainable Energy Reviews, 16 (6), 3744–3753. https://doi.org/10.1016/J.RSER.2012.03.017
  • Naureen, R., Tariq, M., Yusoff, I., Chowdhury, A. J. K., & Ashraf, M. A. (2015) Synthesis, spectroscopic and chromatographic studies of sunflower oil biodiesel using optimized base catalyzed methanolysis. Saudi Journal of Biological Science, 22 (3), 332–339. https://doi.org/10.1016/J.SJBS.2014.11.017
  • Ramadhas, A. S., Jayaraj, S., & Muraleedharan, C. (2006). Theoretical modeling and experimental studies on biodiesel-fueled engine, Renewable Energy, 31 (11), 1813–1826. https://doi.org/10.1016/J.RENENE.2005.09.011
  • Asokan, M. A., Senthur Prabu, S., Shikhar Kamesh., & Wasiuddin Khan. (2018). Performance, combustion and emission characteristics of diesel engine fueled with papaya and watermelon seed oil bio-diesel/diesel blends. Energy, 145, 238-245. https://doi.org/10.1016/J.ENERGY.2017.12.140
  • Mattana Santasnachok., Charoen Chinwanitcharoen., Wirogana Ruengphrathuengsuka., & Ekkachai Sutheerasak. (2023), Diesel-engine generator tests fueled with ethyl and methyl esters of palm oil as catalyzed by potassium hydroxide, Energy Reports, 9(10), 48-55. https://doi.org/10.1016/J.EGYR.2023.05.061.
  • Venkatesan, H., Sivamani, S., Premkumar, & T., Tharun, P. (2017). Reduction of Exhaust Emissions Using a Nanometallic Enriched Lemongrass Biodiesel Blend. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39 (21), 2065–2071. https://doi.org/10.1080/15567036.2017.139549
  • Hariram, V., Saravanan, A., Nadanakumar, V., Vinoth Kumar, M., Balachandar, M., John Godwin, J., Seralathan, S., & Vasudev, K. L. (2022). Optimized Grapeseed Biodiesel Production and its Effect on the CI engines Combustion Characteristics at Variable Compression Ratios. International Journal of Vehicle Structures & Systems, 14(2), 242-256. https://DOI.ORG/10.4273/IJVSS.14.2.19
  • Panneerselvam, N., Murugesan, A., Vijayakumar, C & Subramaniam, D. (2016). Optimization of biodiesel produced from watermelon (Citrullus vulgaris) using batch-type production unit. Energy sources, Part A: Recovery, Utilization, and Environmental Effects, 38 (16), 2343–2348. https://doi.org/10.1080/15567036.2015.1048389
  • Betiku, E., Osunleke, A., Odude, V., Bamimore, A., Oladipo, B., Okeleye, A., & Ishola, N. (2021) Performance evaluation of adaptive neuro-fuzzy inference system, artificial neural network and response surface methodology in modeling biodiesel synthesis from palm kernel oil by transesterification, Biofuels, 12 (3), 339–354. https://doi.org/10.1080/17597269.2018.1472980
  • Balaji Dhanapal., Hariram Venkatesan., & Balachandar Moorthy. (2024). Synergetic effect of hydrogen supplementation with waste cooking oil biodiesel – An assessment of the emission, combustion and performance parameters of a compression ignition engine. International Journal of Hydrogen Energy, 49 (B), 1292–1302. https://doi.org/10.1016/j.ijhydene.2023.11.052
  • Betiku, E., Omilakin, O. R., Ajala, S. O., Okeleye, A. A., Taiwo, A. E., & Solomon, B. O. (2014) Mathematical modeling and process parameters optimization studies by artificial neural network and response surface methodology: A case of non-edible neem (Azadirachta indica) seed oil biodiesel synthesis, Energy, 72, 266–273. https://doi.org/10.1016/J.ENERGY.2014.05.033
  • Stamenković, O. S., Rajković, K., Veličković, A. V., Milić, P. S., & Veljković, V. B. (2013), Optimization of base-catalyzed ethanolysis of sunflower oil by regression and artificial neural network models, Fuel Processing Technlology, 114, 101–108. https://doi.org/10.1016/J.FUPROC.2013.03.038
  • Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes, J. Clin. Epidemiol, 49 (11), 1225–1231. https://doi.org/10.1016/S0895-4356(96)00002-9
  • Lam, M. K., & Lee, K. T. (2012). Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances, 30(3), 673-690. https://doi.org/10.1016/J.BIOTECHADV.2011.11.008
  • Lam, M. K., Lee, K. T., & Mohamed, A. R. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28(4), 500-518. https://doi.org/10.1016/J.BIOTECHADV.2010.03.002
  • Tang, D., Han, W., Li, P., Miao, X., & Zhong, J. (2011). CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 102 (3), 3071-3076. DOI: 10.1016/J.BIORTECH.2010.10.047. https://doi.org/10.1016/j.biortech.2010.10.047
  • Talebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683-710. https://doi.org/10.1016/J.APENERGY.2012.11.061
  • Godwin John, J., Hariram, V., & Seralathan, S. (2018). Emission reduction using improved fuel properties of algal oil biodiesel and its blends. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40 (1)1, 45-53. https://doi.org/10.1080/15567036.2017.1405108
  • Lee, J. H., Lee, T. H., & Park, J. M. (2010). Biodiesel production from Nannochloropsis microalgae: A review. Biotechnology Advances, 28(5), 526-535. https://doi.org/10.1016/J.BIOMBIOE.2024.107240
  • Halim, R., Danquah, M. K., & Webley, P. A. (2012). Oil extraction from microalgae for biodiesel production. Bioresource Technology, 102(1), 178-185. https://doi.org/10.1016/J.BIORTECH.2010.06.136
  • Amin, N. A. S., & Lee, K. T. (2009). Biodiesel production from microalgae as renewable energy: A review. Renewable and Sustainable Energy Reviews, 13(3), 683-693. https://doi.org/10.1016/J.FUEL.2024.131547
  • Turan., Mesci, N. G., & Ozgonenel, B. (2011). Artificial neural network (ANN) approach for modeling Zn(II) adsorption from leachate using a new biosorbent. Chemical Engineering Journal, 173, 98–105. https://doi.org/10.1016/J.CEJ.2011.07.042
  • Ekkachai Sutheerasak., Worachest Pirompugd., & Sathaporn Chuepeng. (2023). The performance and emission of a generator-diesel engine fueled with palm oil methyl ester combined with carbureting biobutanol, Energy Reports, 9(3), 210-218. https://doi.org/10.1016/J.EGYR.2022.12.109
  • Oyetola Ogunkunle., & Noor A, Ahmed. (2020), Exhaust emissions and engine performance analysis of a marine diesel engine fuelledwith Parinari polyandra biodiesel–diesel blends, Energy Reports, 6: 2999-3007. https://doi.org/10.1016/j.egyr.2020.10.070
  • Latchubugata, C. S., Kondapaneni, R. V., Patluri, K. K., Virendra, U., & Vedantam, S. (2018). Kinetics and optimization studies using Response Surface Methodology in biodiesel production using heterogeneous catalyst, Chemical Engineering Research and Design, 135, 129–139. https://doi.org/10.1016/J.CHERD.2018.05.022
  • Serpil Savcı. (2017), Treatment of Biodiesel Wastewater Using Yellow Mustard Seeds, Turkish Journal of Engineering, 1(1), 11 - 17, https://doi.org/10.31127/TUJE.315927
  • Rocabruno-Vald´es, C.I., Ramírez-Verduzco, L.F., & Hern´andez, J.A. (2015). Artificial neural network models to predict density, dynamic viscosity, and cetane number of biodiesel. Fuel, 147, 9–17. https://doi.org/10.1016/J.FUEL.2015.01.024
  • Gul Muhammad., Ange Douglas Potchamyou Ngatcha., Yongkun Lv., Wenlong Xiong., Yaser A. El-Badry., Eylem Asmatulu., Jingliang Xu., & Md Asraful Alam. (2021). Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network, Renewable Energy, 184, 753-764. https://doi.org/10.1016/J.RENENE.2021.11.091
  • Mehmet Çağatay., & Suleyman Karacan. (2022), Multivariable generalized predictive control of reactive distillation column process for biodiesel production, Turkish Journal of Engineering, 6 (1), 40 – 53. https://doi.org/10.31127/TUJE.801441
  • Venkatesan, H., Sivamani, S., Bhutoria, K., & Vora, H. H. (2019). Assessment of Waste Plastic Oil Blends in Performance, Combustion and Emission Parameters in Direct Injection Compression Ignition Engine. International Journal of Ambient Energy, 40 (2): 170–178. https://doi.org/10.1080/01430750.2017.1381155
  • Alam, F., Mobin, S., & Chowdhury, H. (2015). Third generation biofuel from algae. Procedia Engineering, 105, 763-768. https://doi.org/10.1016/j.proeng.2015.05.068
  • Gouveia, L., & Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology, 36(2), 269-274. https://doi.org/10.1007/s10295-008-0495-6
There are 43 citations in total.

Details

Primary Language English
Subjects Clean Production Technologies
Journal Section Articles
Authors

Hariram V 0000-0003-3053-038X

Godwin John J 0000-0002-5334-7193

Saravanan A 0000-0003-3315-5650

Sangeethkumar E 0000-0001-5811-2513

Vinoth Kumar M 0000-0003-2813-7095

Balachandar M 0000-0002-8223-4948

Ramanathan V 0000-0002-1693-1358

Baskar S 0000-0002-3681-4474

Project Number Nil
Early Pub Date January 19, 2025
Publication Date
Submission Date July 31, 2024
Acceptance Date September 16, 2024
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA V, H., J, G. J., A, S., E, S., et al. (2025). Optimized Biodiesel Production from Dunaliella Salina, A Unicellular Green Algae through Artificial Neural Network. Turkish Journal of Engineering, 9(2), 179-188. https://doi.org/10.31127/tuje.1525407
AMA V H, J GJ, A S, E S, M VK, M B, V R, S B. Optimized Biodiesel Production from Dunaliella Salina, A Unicellular Green Algae through Artificial Neural Network. TUJE. January 2025;9(2):179-188. doi:10.31127/tuje.1525407
Chicago V, Hariram, Godwin John J, Saravanan A, Sangeethkumar E, Vinoth Kumar M, Balachandar M, Ramanathan V, and Baskar S. “Optimized Biodiesel Production from Dunaliella Salina, A Unicellular Green Algae through Artificial Neural Network”. Turkish Journal of Engineering 9, no. 2 (January 2025): 179-88. https://doi.org/10.31127/tuje.1525407.
EndNote V H, J GJ, A S, E S, M VK, M B, V R, S B (January 1, 2025) Optimized Biodiesel Production from Dunaliella Salina, A Unicellular Green Algae through Artificial Neural Network. Turkish Journal of Engineering 9 2 179–188.
IEEE H. V, G. J. J, S. A, S. E, V. K. M, B. M, R. V, and B. S, “Optimized Biodiesel Production from Dunaliella Salina, A Unicellular Green Algae through Artificial Neural Network”, TUJE, vol. 9, no. 2, pp. 179–188, 2025, doi: 10.31127/tuje.1525407.
ISNAD V, Hariram et al. “Optimized Biodiesel Production from Dunaliella Salina, A Unicellular Green Algae through Artificial Neural Network”. Turkish Journal of Engineering 9/2 (January 2025), 179-188. https://doi.org/10.31127/tuje.1525407.
JAMA V H, J GJ, A S, E S, M VK, M B, V R, S B. Optimized Biodiesel Production from Dunaliella Salina, A Unicellular Green Algae through Artificial Neural Network. TUJE. 2025;9:179–188.
MLA V, Hariram et al. “Optimized Biodiesel Production from Dunaliella Salina, A Unicellular Green Algae through Artificial Neural Network”. Turkish Journal of Engineering, vol. 9, no. 2, 2025, pp. 179-88, doi:10.31127/tuje.1525407.
Vancouver V H, J GJ, A S, E S, M VK, M B, V R, S B. Optimized Biodiesel Production from Dunaliella Salina, A Unicellular Green Algae through Artificial Neural Network. TUJE. 2025;9(2):179-88.
Flag Counter