Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 2, 334 - 341
https://doi.org/10.31127/tuje.1526120

Abstract

References

  • Awogbemi, O., Kallon D. V. V., Aigbodion V. S., & Mzozoyana V. (2021). Property determination, FA composition and NMR characterization of palm oil, used palm oil and their methyl esters. Processes, 10, 11. https://doi.org/10.3390/pr10010011
  • Awogbemi, O., Onuh, E. I., & Komolafe, C. A. (2019). Thermal degradation and spectroscopic study of neat palm oil, waste palm oil, and waste palm oil methyl ester, In: IOP Conference Series: Earth and Environmental Science, International Conference on Energy and Sustainable Environment 18–20 June 2019, Covenant University, Nigeria, 2019, vol. 331, no. 1, p. 012032: IOP Publishing. https://doi.org/10.1088/1755-1315/331/1/012032
  • Gregory, M., Hewitt, J., Ozinga, S., Fournier, P., & Brasier, P. J. (2022). Palm Oil Production, Consumption and Trade Patterns: The Outlook From An EU Perspective. https://www.fern.org/fileadmin/uploads/fern/Documents/2022/Palm_oil_production_comsumption_and_trade_pattern.pdf
  • Shahbandeh, M. Palm oil: global production volume 2012/13-2022/23. https://www.statista.com/statistics/613471/palm-oil-production-volume-worldwide
  • Shahbandeh M. Palm oil usage worldwide 2015/16-2022/23. https://www.statista.com/statistics/274127/world-palm-oil-usage-distribution/
  • Index mundi. Palm Oil. https://www.indexmundi.com/agriculture/?country=th&commodity=palm-oil&graph=food-use-domestic-consumption
  • Panadare, D. (2015). Applications of waste cooking oil other than biodiesel: a review. Iranian Journal of Chemical Engineering, 12, 55-76.
  • Wiege, B., Fehling, E., Matthäus, B., & Schmidt, M. (2020) Changes in physical and chemical properties of thermally and oxidatively degraded sunflower oil and palm fat. Foods, 9, 1273. https://doi.org/10.3390/foods9091273
  • Awogbemi, O., Kallon, D. V. V., Onuh, E. I., & Aigbodion, V. S. (2021). An overview of the classification, production and utilization of biofuels for internal combustion engine applications. Energies, 14, 5687. https://doi.org/10.3390/en14185687
  • Ghane, E. T., Poormohammadi, A., Khazaei, S., & Mehri, F. (2022). Concentration of potentially toxic elements in vegetable oils and health risk assessment: a systematic review and meta-analysis. Biological Trace Element Research, 200, 437-446. https://doi.org/10.1007/s12011-021-02645-x
  • Awogbemi, O., & Kallon, D. V. V. (2024). Conversion of hazardous waste cooking oil into non-fuel value added products. International Journal of Ambient Energy, 45, 2345253. https://doi.org/10.1080/01430750.2024.2345253
  • Azahar, A., Nurhafizah, M., Abdullah, N., & Ul-Hamid, A. (2023). A review on the palm oil waste thermal degradation analysis and its kinetic triplet study. BioEnergy Research, 16, 1467-1492. https://doi.org/10.1007/s12155-023-10576-9
  • Lai, V., Yusoff, N. Y. M., Ahmed, A. N., Huang, Y. F., Boo, K. B. W., & El-Shafie, A. (2024). The benefits and perspectives of the palm oil industry in Malaysia. Environment, Development and Sustainability, 1-15. https://doi.org/10.1007/s10668-024-04593-7
  • Awogbemi, O., Kallon, D. V. V., Aigbodion, V. S., & Panda, S. (2021). Advances in biotechnological applications of waste cooking oil. Case Studies in Chemical and Environmental Engineering. 4, 100158. https://doi.org/10.1016/j.cscee.2021.100158
  • Kumar, K. S., Surakas, R., Patro, S. G. K., Govil, N., Ramis, M. K., Razak, A., Sharma, P., Alsubih, M., Islam, S., Khan, T. Y., & Almakayeel, N. (2024). Performance, Combustion, and Emission analysis of diesel engine fuelled with pyrolysis oil blends and n-propyl alcohol-RSM optimization and ML modelling. Journal of Cleaner Production, 434, 140354. https://doi.org/10.1016/j.jclepro.2023.140354
  • Abd Raffik, N. N., Harun, A., & Zahari, F. (2024). Systematic Literature Review On Recycling Waste Cooking Oil Using Public Service Announcement. International Journal of Art and Design, 8, 11-19. https://doi.org/10.24191/ijad.v8i1.1007
  • Recepoğlu, Y. K., Gümüşbulut, G., & Özşen, A.Y. (2023). A comparative assessment for efficient oleuropein extraction from olive leaf (Olea europaea L. folium). Turkish Journal of Engineering, 7, 116-124. https://doi.org/10.31127/tuje.1058500
  • Pelemo, J., Akindeji, K. T., Inambao, F. L., Awogbemi, O., & Onuh, E.I. (2022). A Comparative Evaluation of Biodiesel and Used Cooking Oil as Feedstock for HDRD Application: A Review. In; Diesel Engines and Biodiesel Engines Technologies. pp. 61-76. https://doi.org/10.5772/intechopen.104393
  • Onn, M., Jalil, M. J., Mohd Yusoff, N. I. S., Edward, E. B., & Wahit, M. U. (2024). A comprehensive review on chemical route to convert waste cooking oils to renewable polymeric materials. Industrial Crops and Products, 211, 118194. https://doi.org/10.1016/j.indcrop.2024.118194
  • Vural U. (2020). Waste mineral oils re-refining with physicochemical methods. Turkish Journal of Engineering, 4, 62-69. https://doi.org/10.31127/tuje.616960
  • Idun-Acquah, N., Obeng, G. Y., & Mensah, E. (2016) Repetitive use of vegetable cooking oil and effects on physico-chemical properties, Case of frying with redfish (Lutjanus fulgens). Science and Technology, 6, 8-14. https://doi.org/10.5923/j.scit.20160601.02
  • Aruna, S. O. (2023). Chemical composition analysis of palm oils in Ijebu-ode, Ogun State. African Journal of Chemical Education, 13, 91-111.
  • Adeyeye, E. I., & Adubiaro, H. O. (2018). Proximate, mineral, vitamin compositions, mineral safety index and mineral ratios of the flesh of heterosexual pairs of Neopetrolisthes maculatus. Sustainable Food Production, 3, 46-62. https://doi.org/10.18052/www.scipress.com/SFP.3.46
  • Antwi, L. A. A., Nimoh, F., Agyemang, P., & Apike, I. A. (2023). Perception and adoption of free fatty acid reduction techniques by small scale palm oil processors: Evidence from Ghana. Journal of Agriculture and Food Research, 11, 100462. https://doi.org/10.1016/j.jafr.2022.100462
  • Adhikesavan, C., Ganesh, D., & Charles Augustin, V. (2022). Effect of quality of waste cooking oil on the properties of biodiesel, engine performance and emissions. Cleaner Chemical Engineering, 4, 100070. https://doi.org/10.1016/j.clce.2022.100070
  • Hu. F., Piao, M., Yang, C., Diao, Q., & Tu, Y. (2023). Effects of coconut oil and palm oil on growth, rumen microbiota, and fatty acid profile of suckling calves. Microorganisms, 11, 655. https://doi.org/10.3390/microorganisms11030655
  • Custers, E. M., Kiliaan, E., & Amanda, J. (2022). Dietary lipids from body to brain. Progress in Lipid Research, 85, 101144. https://doi.org/10.1016/j.plipres.2021.101144
  • Awogbemi, O., Onuh, E. I., Inambao, F. L. (2019). Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. International Journal of Low-Carbon Technologies, 14, 417-425. https://doi.org/10.1093/ijlct/ctz038
  • Rahman, H., Sitompul, J. P., & Tjokrodiningrat, S. (2022). The composition of fatty acids in several vegetable oils from Indonesia. Biodiversitas: Journal of Biological Diversity, 23, 2167-2176. https://doi.org/10.13057/biodiv/d230452
  • Hidayati, S., Nurainy, F., Suroso, E., Sartika, D., & Hadi, S. (2024). Effect of Heating Time On Changes In Physicochemical Properties And Fatty Acid Composition Of Red Palm Oil. African Journal of Food, Agriculture, Nutrition and Development, 24, 25628-25644. https://doi.org/10.22004/ag.econ.340621
  • Morcillo, F., Vaissayre, V., Serret, J., Avallone, S., Domonhédo, H., Jacob, F., & Dussert, S. (2021). Natural diversity in the carotene, tocochromanol and fatty acid composition of crude palm oil. Food Chemistry, 365, 130638. https://doi.org/10.1016/j.foodchem.2021.130638
  • Hajderi, A., Bozo, L., & Basholli, F. (2024). The impact of alternative fuel on diesel in reducing of pollution from vehicles. Advanced Engineering Science, 4, 15-24.
  • Kumar, K. S., Edayadulla, N., Raja, P., & Surakasi, R. (2023). The Effect of Emissions from DI-Based Sources Causing Hazardous Health Effects. In: Sahoo, S., Yedla, N. (eds). International Conference on Recent Advances in Mechanical Engineering Research and Development. Singapore, Springer. pp. 1-13. https://doi.org/10.1007/978-981-97-1080-5_1
  • Kumar, K. S., Razak, A., Yadav, A., Raghavendra Rao, P. S., Majdi, H. S., Khan, T. M. Y., Almakayeel, N., & Singh, K. (2024). Experimental analysis of cycle tire pyrolysis oil doped with 1-decanol + TiO2 additives in compression ignition engine using RSM optimization and machine learning approach. Case Studies in Thermal Engineering, 61, 104863. https://doi.org/10.1016/j.csite.2024.104863
  • Kumar, K. S., & Muniamuthu, S. (2024). Assessment of performance, combustion, and emission characteristics of single cylinder diesel engine fuelled by pyrolysis oil+ CeO2 nanoparticles and 1-butanol blends. International Journal of Ambient Energy, 45, 2344568. https://doi.org/10.1080/01430750.2024.2344568
  • Awogbemi, O., Kallon, D. V. V., & Ray, R. C. (2024). Conversion of Agriculture Residues for Bioenergy Production. In: Arora J, Joshi A, Ray RC. (eds) Transforming Agriculture Residues for Sustainable Development. Waste as a Resource. Springer, Cham. 273–294. https://doi.org/10.1007/978-3-031-61133-9_12
  • Kumar, K. S., Alqarni, S., Islam, S., & Shah, M. A. (2024). Royal Poinciana Biodiesel Blends with 1-Butanol as a Potential Alternative Fuel for Unmodified Research Engines. ACS omega, 12, 13960-13974. https://doi.org/10.1021/acsomega.3c09014
  • Nurullayev, V., Taci, U. B., Ramazan, G. G., Arif, A. Z., Valiyaddin, G. A., & Maxsud, H. M. (2023). Coordination compounds for rheological and physical-chemical regularity of energy consumption decrease while transporting crude oils. Turkish Journal of Engineering, 7(3), 180-185. https://doi.org/10.31127/tuje.1093934
  • Akhtar, M. S. (2023). Bentonite and polymeric support fluids used for stabilization in excavations. Turkish Journal of Engineering, 7(4), 338-348. https://doi.org/10.31127/tuje.1118896
  • Dume, G., & Metalla, J. (2024). Revolutionizing engineering education: Leveraging LabVIEW virtual instrumentation in electrical machines real-time control for distance learning. Engineering Applications, 3(1), 36-44.
  • Awogbemi, O., Lawal, A. S., & Adeyeye, E. I. (2024). Effects of frying and food items on the physicochemical properties of palm oil obtained from Nigeria. Discover Food, 4(1), 1-13. https://doi.org/10.1007/s44187-024-00196-3

Effects of Heat and Food Items on the Fatty Acids Profile of Palm Oil Produced in Nigeria

Year 2025, Volume: 9 Issue: 2, 334 - 341
https://doi.org/10.31127/tuje.1526120

Abstract

Nigeria is the highest producer of palm oil in Africa and generates huge volume of waste palm oil (WPO), annually. When palm oil is used to fry food items, the fatty acid (FA) profile of the WPO changes significantly. This study investigates the effect of heat and food items on the FA composition of Nigerian palm oil. The effluents of palm oil produced in Nigeria used to fry some food items were subjected to FA profile determination. The results showed that the concentration of C16:0 ranged from 37.46 % to 47.58 % while that of C18:1 in the samples was between 42.43 % and 47.17 % which constituted the major FA in the neat palm oil and WPO samples. The detection of C18:2 and C10:0 in the WPO and not in the neat palm oil is due to the effect of the heat that degraded the longer chain FA molecules. The coefficient of variation at a 95 % confidence level was high between 84.43 % and 121.48 % shows the type of food the palm oil was used to fry significantly affected the FA composition of the WPO. More collaborative studies on the optimization of frying parameters of palm oil.

References

  • Awogbemi, O., Kallon D. V. V., Aigbodion V. S., & Mzozoyana V. (2021). Property determination, FA composition and NMR characterization of palm oil, used palm oil and their methyl esters. Processes, 10, 11. https://doi.org/10.3390/pr10010011
  • Awogbemi, O., Onuh, E. I., & Komolafe, C. A. (2019). Thermal degradation and spectroscopic study of neat palm oil, waste palm oil, and waste palm oil methyl ester, In: IOP Conference Series: Earth and Environmental Science, International Conference on Energy and Sustainable Environment 18–20 June 2019, Covenant University, Nigeria, 2019, vol. 331, no. 1, p. 012032: IOP Publishing. https://doi.org/10.1088/1755-1315/331/1/012032
  • Gregory, M., Hewitt, J., Ozinga, S., Fournier, P., & Brasier, P. J. (2022). Palm Oil Production, Consumption and Trade Patterns: The Outlook From An EU Perspective. https://www.fern.org/fileadmin/uploads/fern/Documents/2022/Palm_oil_production_comsumption_and_trade_pattern.pdf
  • Shahbandeh, M. Palm oil: global production volume 2012/13-2022/23. https://www.statista.com/statistics/613471/palm-oil-production-volume-worldwide
  • Shahbandeh M. Palm oil usage worldwide 2015/16-2022/23. https://www.statista.com/statistics/274127/world-palm-oil-usage-distribution/
  • Index mundi. Palm Oil. https://www.indexmundi.com/agriculture/?country=th&commodity=palm-oil&graph=food-use-domestic-consumption
  • Panadare, D. (2015). Applications of waste cooking oil other than biodiesel: a review. Iranian Journal of Chemical Engineering, 12, 55-76.
  • Wiege, B., Fehling, E., Matthäus, B., & Schmidt, M. (2020) Changes in physical and chemical properties of thermally and oxidatively degraded sunflower oil and palm fat. Foods, 9, 1273. https://doi.org/10.3390/foods9091273
  • Awogbemi, O., Kallon, D. V. V., Onuh, E. I., & Aigbodion, V. S. (2021). An overview of the classification, production and utilization of biofuels for internal combustion engine applications. Energies, 14, 5687. https://doi.org/10.3390/en14185687
  • Ghane, E. T., Poormohammadi, A., Khazaei, S., & Mehri, F. (2022). Concentration of potentially toxic elements in vegetable oils and health risk assessment: a systematic review and meta-analysis. Biological Trace Element Research, 200, 437-446. https://doi.org/10.1007/s12011-021-02645-x
  • Awogbemi, O., & Kallon, D. V. V. (2024). Conversion of hazardous waste cooking oil into non-fuel value added products. International Journal of Ambient Energy, 45, 2345253. https://doi.org/10.1080/01430750.2024.2345253
  • Azahar, A., Nurhafizah, M., Abdullah, N., & Ul-Hamid, A. (2023). A review on the palm oil waste thermal degradation analysis and its kinetic triplet study. BioEnergy Research, 16, 1467-1492. https://doi.org/10.1007/s12155-023-10576-9
  • Lai, V., Yusoff, N. Y. M., Ahmed, A. N., Huang, Y. F., Boo, K. B. W., & El-Shafie, A. (2024). The benefits and perspectives of the palm oil industry in Malaysia. Environment, Development and Sustainability, 1-15. https://doi.org/10.1007/s10668-024-04593-7
  • Awogbemi, O., Kallon, D. V. V., Aigbodion, V. S., & Panda, S. (2021). Advances in biotechnological applications of waste cooking oil. Case Studies in Chemical and Environmental Engineering. 4, 100158. https://doi.org/10.1016/j.cscee.2021.100158
  • Kumar, K. S., Surakas, R., Patro, S. G. K., Govil, N., Ramis, M. K., Razak, A., Sharma, P., Alsubih, M., Islam, S., Khan, T. Y., & Almakayeel, N. (2024). Performance, Combustion, and Emission analysis of diesel engine fuelled with pyrolysis oil blends and n-propyl alcohol-RSM optimization and ML modelling. Journal of Cleaner Production, 434, 140354. https://doi.org/10.1016/j.jclepro.2023.140354
  • Abd Raffik, N. N., Harun, A., & Zahari, F. (2024). Systematic Literature Review On Recycling Waste Cooking Oil Using Public Service Announcement. International Journal of Art and Design, 8, 11-19. https://doi.org/10.24191/ijad.v8i1.1007
  • Recepoğlu, Y. K., Gümüşbulut, G., & Özşen, A.Y. (2023). A comparative assessment for efficient oleuropein extraction from olive leaf (Olea europaea L. folium). Turkish Journal of Engineering, 7, 116-124. https://doi.org/10.31127/tuje.1058500
  • Pelemo, J., Akindeji, K. T., Inambao, F. L., Awogbemi, O., & Onuh, E.I. (2022). A Comparative Evaluation of Biodiesel and Used Cooking Oil as Feedstock for HDRD Application: A Review. In; Diesel Engines and Biodiesel Engines Technologies. pp. 61-76. https://doi.org/10.5772/intechopen.104393
  • Onn, M., Jalil, M. J., Mohd Yusoff, N. I. S., Edward, E. B., & Wahit, M. U. (2024). A comprehensive review on chemical route to convert waste cooking oils to renewable polymeric materials. Industrial Crops and Products, 211, 118194. https://doi.org/10.1016/j.indcrop.2024.118194
  • Vural U. (2020). Waste mineral oils re-refining with physicochemical methods. Turkish Journal of Engineering, 4, 62-69. https://doi.org/10.31127/tuje.616960
  • Idun-Acquah, N., Obeng, G. Y., & Mensah, E. (2016) Repetitive use of vegetable cooking oil and effects on physico-chemical properties, Case of frying with redfish (Lutjanus fulgens). Science and Technology, 6, 8-14. https://doi.org/10.5923/j.scit.20160601.02
  • Aruna, S. O. (2023). Chemical composition analysis of palm oils in Ijebu-ode, Ogun State. African Journal of Chemical Education, 13, 91-111.
  • Adeyeye, E. I., & Adubiaro, H. O. (2018). Proximate, mineral, vitamin compositions, mineral safety index and mineral ratios of the flesh of heterosexual pairs of Neopetrolisthes maculatus. Sustainable Food Production, 3, 46-62. https://doi.org/10.18052/www.scipress.com/SFP.3.46
  • Antwi, L. A. A., Nimoh, F., Agyemang, P., & Apike, I. A. (2023). Perception and adoption of free fatty acid reduction techniques by small scale palm oil processors: Evidence from Ghana. Journal of Agriculture and Food Research, 11, 100462. https://doi.org/10.1016/j.jafr.2022.100462
  • Adhikesavan, C., Ganesh, D., & Charles Augustin, V. (2022). Effect of quality of waste cooking oil on the properties of biodiesel, engine performance and emissions. Cleaner Chemical Engineering, 4, 100070. https://doi.org/10.1016/j.clce.2022.100070
  • Hu. F., Piao, M., Yang, C., Diao, Q., & Tu, Y. (2023). Effects of coconut oil and palm oil on growth, rumen microbiota, and fatty acid profile of suckling calves. Microorganisms, 11, 655. https://doi.org/10.3390/microorganisms11030655
  • Custers, E. M., Kiliaan, E., & Amanda, J. (2022). Dietary lipids from body to brain. Progress in Lipid Research, 85, 101144. https://doi.org/10.1016/j.plipres.2021.101144
  • Awogbemi, O., Onuh, E. I., Inambao, F. L. (2019). Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. International Journal of Low-Carbon Technologies, 14, 417-425. https://doi.org/10.1093/ijlct/ctz038
  • Rahman, H., Sitompul, J. P., & Tjokrodiningrat, S. (2022). The composition of fatty acids in several vegetable oils from Indonesia. Biodiversitas: Journal of Biological Diversity, 23, 2167-2176. https://doi.org/10.13057/biodiv/d230452
  • Hidayati, S., Nurainy, F., Suroso, E., Sartika, D., & Hadi, S. (2024). Effect of Heating Time On Changes In Physicochemical Properties And Fatty Acid Composition Of Red Palm Oil. African Journal of Food, Agriculture, Nutrition and Development, 24, 25628-25644. https://doi.org/10.22004/ag.econ.340621
  • Morcillo, F., Vaissayre, V., Serret, J., Avallone, S., Domonhédo, H., Jacob, F., & Dussert, S. (2021). Natural diversity in the carotene, tocochromanol and fatty acid composition of crude palm oil. Food Chemistry, 365, 130638. https://doi.org/10.1016/j.foodchem.2021.130638
  • Hajderi, A., Bozo, L., & Basholli, F. (2024). The impact of alternative fuel on diesel in reducing of pollution from vehicles. Advanced Engineering Science, 4, 15-24.
  • Kumar, K. S., Edayadulla, N., Raja, P., & Surakasi, R. (2023). The Effect of Emissions from DI-Based Sources Causing Hazardous Health Effects. In: Sahoo, S., Yedla, N. (eds). International Conference on Recent Advances in Mechanical Engineering Research and Development. Singapore, Springer. pp. 1-13. https://doi.org/10.1007/978-981-97-1080-5_1
  • Kumar, K. S., Razak, A., Yadav, A., Raghavendra Rao, P. S., Majdi, H. S., Khan, T. M. Y., Almakayeel, N., & Singh, K. (2024). Experimental analysis of cycle tire pyrolysis oil doped with 1-decanol + TiO2 additives in compression ignition engine using RSM optimization and machine learning approach. Case Studies in Thermal Engineering, 61, 104863. https://doi.org/10.1016/j.csite.2024.104863
  • Kumar, K. S., & Muniamuthu, S. (2024). Assessment of performance, combustion, and emission characteristics of single cylinder diesel engine fuelled by pyrolysis oil+ CeO2 nanoparticles and 1-butanol blends. International Journal of Ambient Energy, 45, 2344568. https://doi.org/10.1080/01430750.2024.2344568
  • Awogbemi, O., Kallon, D. V. V., & Ray, R. C. (2024). Conversion of Agriculture Residues for Bioenergy Production. In: Arora J, Joshi A, Ray RC. (eds) Transforming Agriculture Residues for Sustainable Development. Waste as a Resource. Springer, Cham. 273–294. https://doi.org/10.1007/978-3-031-61133-9_12
  • Kumar, K. S., Alqarni, S., Islam, S., & Shah, M. A. (2024). Royal Poinciana Biodiesel Blends with 1-Butanol as a Potential Alternative Fuel for Unmodified Research Engines. ACS omega, 12, 13960-13974. https://doi.org/10.1021/acsomega.3c09014
  • Nurullayev, V., Taci, U. B., Ramazan, G. G., Arif, A. Z., Valiyaddin, G. A., & Maxsud, H. M. (2023). Coordination compounds for rheological and physical-chemical regularity of energy consumption decrease while transporting crude oils. Turkish Journal of Engineering, 7(3), 180-185. https://doi.org/10.31127/tuje.1093934
  • Akhtar, M. S. (2023). Bentonite and polymeric support fluids used for stabilization in excavations. Turkish Journal of Engineering, 7(4), 338-348. https://doi.org/10.31127/tuje.1118896
  • Dume, G., & Metalla, J. (2024). Revolutionizing engineering education: Leveraging LabVIEW virtual instrumentation in electrical machines real-time control for distance learning. Engineering Applications, 3(1), 36-44.
  • Awogbemi, O., Lawal, A. S., & Adeyeye, E. I. (2024). Effects of frying and food items on the physicochemical properties of palm oil obtained from Nigeria. Discover Food, 4(1), 1-13. https://doi.org/10.1007/s44187-024-00196-3
There are 41 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry (Other), Waste Management, Reduction, Reuse and Recycling, Food Engineering
Journal Section Articles
Authors

Omojola Awogbemi 0000-0001-6830-6434

Emmanuel Ilesanmi Adeyeye 0009-0003-6961-5847

Ayodeji Salami Lawal 0000-0002-2398-4044

Early Pub Date January 19, 2025
Publication Date
Submission Date August 1, 2024
Acceptance Date November 18, 2024
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Awogbemi, O., Adeyeye, E. I., & Lawal, A. S. (n.d.). Effects of Heat and Food Items on the Fatty Acids Profile of Palm Oil Produced in Nigeria. Turkish Journal of Engineering, 9(2), 334-341. https://doi.org/10.31127/tuje.1526120
AMA Awogbemi O, Adeyeye EI, Lawal AS. Effects of Heat and Food Items on the Fatty Acids Profile of Palm Oil Produced in Nigeria. TUJE. 9(2):334-341. doi:10.31127/tuje.1526120
Chicago Awogbemi, Omojola, Emmanuel Ilesanmi Adeyeye, and Ayodeji Salami Lawal. “Effects of Heat and Food Items on the Fatty Acids Profile of Palm Oil Produced in Nigeria”. Turkish Journal of Engineering 9, no. 2 n.d.: 334-41. https://doi.org/10.31127/tuje.1526120.
EndNote Awogbemi O, Adeyeye EI, Lawal AS Effects of Heat and Food Items on the Fatty Acids Profile of Palm Oil Produced in Nigeria. Turkish Journal of Engineering 9 2 334–341.
IEEE O. Awogbemi, E. I. Adeyeye, and A. S. Lawal, “Effects of Heat and Food Items on the Fatty Acids Profile of Palm Oil Produced in Nigeria”, TUJE, vol. 9, no. 2, pp. 334–341, doi: 10.31127/tuje.1526120.
ISNAD Awogbemi, Omojola et al. “Effects of Heat and Food Items on the Fatty Acids Profile of Palm Oil Produced in Nigeria”. Turkish Journal of Engineering 9/2 (n.d.), 334-341. https://doi.org/10.31127/tuje.1526120.
JAMA Awogbemi O, Adeyeye EI, Lawal AS. Effects of Heat and Food Items on the Fatty Acids Profile of Palm Oil Produced in Nigeria. TUJE.;9:334–341.
MLA Awogbemi, Omojola et al. “Effects of Heat and Food Items on the Fatty Acids Profile of Palm Oil Produced in Nigeria”. Turkish Journal of Engineering, vol. 9, no. 2, pp. 334-41, doi:10.31127/tuje.1526120.
Vancouver Awogbemi O, Adeyeye EI, Lawal AS. Effects of Heat and Food Items on the Fatty Acids Profile of Palm Oil Produced in Nigeria. TUJE. 9(2):334-41.
Flag Counter