Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 2, 378 - 384
https://doi.org/10.31127/tuje.1532430

Abstract

References

  • Kaliyannan, P., Seikh, A. H., Kalam, M. A., & Venkatesh, R. (2024). Fabrication and Characteristics Study of Aluminium Alloy Hybrid Nanocomposite Synthesized with SiC and Waste Metal Powder. Silicon, 16(2), 843–851. https://doi.org/10.1007/s12633-023-02727-6
  • Tharanikumar, L., Mohan, B., & Anbuchezhiyan, G. (2024). Synthesization and Characterization of Silicon Carbide and Boron Nitride-Reinforced Al–Zn–Mg Alloy Hybrid Nanocomposites Using Squeeze Casting Method. International Journal of Metalcasting, 18(2), 997–1011. https://doi.org/10.1007/s40962-023-01070-1
  • Hynes, N. R. J., Raja, S., Tharmaraj, R., Pruncu, C. I., & Dispinar, D. (2020). Mechanical and tribological characteristics of boron carbide reinforcement of AA6061 matrix composite. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(4), 155. https://doi.org/10.1007/s40430-020-2237-2
  • Czerwinski, F. (2020). Thermal stability of aluminum alloys. Materials, 13, 3441. https://doi.org/10.3390/ma13153441
  • Menachery, N., Thomas, S., Deepanraj, B., & Senthilkumar, N. (2023). Processing of nanoreinforced aluminium hybrid metal matrix composites and the effect of post-heat treatment: a review. Applied Nanoscience, 13, 4075–4099. https://doi.org/10.1007/s13204-022-02704-2
  • Durowaye, S., Sekunowo, O., Bolasodun, B., Oduaran, I., & Lawal, G. (2019). Mechanical and wear characterisation of quarry tailings reinforced A6063 metal matrix composites, Turkish Journal of Engineering, 3(3), 133–139. https://doi.org/10.31127/tuje.490509
  • Singh, V. P., Patel, S. K., Ranjan, A., & Kuriachen, B. (2020). Recent research progress in solid state friction-stir welding of aluminium–magnesium alloys: a critical review. Journal of Materials Research and Technology, 9(3), 6217–6256. https://doi.org/10.1016/j.jmrt.2020.01.008
  • Dhinakarraj, C.K., Senthilkumar, N., Palanikumar, K., & Deepanraj, B. (2024). Machinability evaluation of magnesium composite using response surface methodology and nature-inspired metaheuristic algorithms. International Journal on Interactive Design and Manufacturing, https://doi.org/10.1007/s12008-024-01866-3.
  • Senthilkumar, N. (2024). Characterization of Graphene and Titanium Carbide Reinforced Magnesium Alloy Composite for Transmission Housings in Automobile, SAE Technical Paper, 2024-01-5231. https://doi.org/10.4271/2024-01-5231
  • Madhavarao, S., Raju, Ch. R., Madhukiran, J., Sudheerkumar Varma, N., & Ravi Varma, P. (2018). A Study of Tribological Behaviour of Aluminum-7075/SiC Metal Matrix Composite. Materials Today: Proceedings, 5(9, Part 3), 20013–20022. https://doi.org/10.1016/j.matpr.2018.06.368
  • Choi, H. J., Shin, J. H., & Bae, D. H. (2012). The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites. Composites Part A: Applied Science and Manufacturing, 43(7), 1061–1072. https://doi.org/10.1016/j.compositesa.2012.02.008
  • Singh, R., Hussain, S. A. I., Dash, A., & Rai, R. N. (2020). Modelling and optimizing performance parameters in the wire-electro discharge machining of Al5083/B4C composite by multi-objective response surface methodology. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(6), 344. https://doi.org/10.1007/s40430-020-02418-y
  • Singh, K., Singh, H., Vardhan, S., & Mohan, S. (2021). Mechanical study of Al 7050 and Al 7075 based metal matrix composites: A review. Materials Today: Proceedings, 43, 673–677. https://doi.org/10.1016/j.matpr.2020.12.601
  • Gezer, U., Demir, B., Kepir, Y., Günöz, A., Kara, M. (2023). A numerical study on the low-velocity impact response of hybrid composite materials, Turkish Journal of Engineering, 7(4), 314–321. https://doi.org/10.31127/tuje.1191785
  • Pillari, L. K., Umasankar, V., Elamathi, P., & Chandrasekar, G. (2016). Synthesis and characterization of nano hexagonal boron nitride powder and evaluating the influence on aluminium alloy matrix. Materials Today: Proceedings, 3(6), 2018–2026. https://doi.org/10.1016/j.matpr.2016.04.104
  • Elly, O. I., & Yang, Y. (2024). Feed optimization based on force modelling and TLBO algorithm in milling Al 7075. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(5), 287.
  • Günöz, A., Kepir, Y., & Kara, M. (2022). The investigation of hardness and density properties of GFRP composite pipes under seawater conditions. Turkish Journal of Engineering, 6 (1), 34-39. http://dx.doi.org/10.31127/tuje.775536
  • Senthil, V., Balasubramanian, E., Raju, G.S., & Senthilkumar, N. (2024). Drilling Studies on MWCNT- and Zirconia-Reinforced Aluminium Alloy 8011 Hybrid Composite: A Machine Learning Approach. Arabian Journal for Science and Engineering, 49, 14741–14762. https://doi.org/10.1007/s13369-024-08792-2
  • Zhou, X., Gao, Y., Wang, Y., Lu, X., & Li, Y. (2021). Fabrication and characteristic of 2024Al matrix composites reinforced by carbon fibers and ZrCp by spark plasma sintering. Journal of Alloys and Compounds, 889, 161543. https://doi.org/10.1016/j.jallcom.2021.161543
  • Islam, M. U., & Wallace, W. (1988). Carbon fibre reinforced aluminium matrix composites. A critical review. Advanced Materials and Manufacturing Processes, 3(1), 1–35. https://doi.org/10.1080/08842588708953194
  • Prakash, D. S., Balaji, V., Rajesh, D., Anand, P., & Karthick, M. (2022). Experimental investigation of nano reinforced aluminium-based metal matrix composites. Materials Today: Proceedings, 54, 852–857. https://doi.org/10.1016/j.matpr.2021.11.189
  • Thomas, S., & Umasankar, V. (2019). Review of Recent Progress in the Development and Properties of Aluminum Metal Matrix Composites Reinforced with Multiwalled Carbon Nanotube by Powder Metallurgy Route. Materials Performance and Characterization, 8(3), 371–400. http://dx.doi.org/10.1520/MPC20180140
  • Venkatesh, L., Arjunan, T. V, & Ravikumar, K. (2019). Microstructural characteristics and mechanical behaviour of aluminium hybrid composites reinforced with groundnut shell ash and B4C. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(7), 295. http://dx.doi.org/10.1007/s40430-019-1800-1
  • Parikh, V. K., Badheka, V. J., Badgujar, A. D., & Ghetiya, N. D. (2021). Fabrication and processing of aluminum alloy metal matrix composites. Materials and Manufacturing Processes, 36(14), 1604–1617.
  • Mobasherpour, I., Tofigh, A. A., & Ebrahimi, M. (2013). Effect of nano-size Al2O3 reinforcement on the mechanical behavior of synthesis 7075 aluminum alloy composites by mechanical alloying. Materials Chemistry and Physics, 138(2), 535–541. https://doi.org/10.1016/j.matchemphys.2012.12.015
  • Thomas, S., Pillari, L. K., Umasankar, V., & Pious, J. (2019). Effect of sonication in enhancing the uniformity of MWCNT distribution in aluminium alloy AA2219 matrix. Materials Today: Proceedings, 18, 4058–4066. https://doi.org/10.1016/j.matpr.2019.07.349
  • Harichandran, R., Selvakumar, N., & Venkatachalam, G. (2017). High Temperature Wear Behaviour of Nano/Micro B4C Reinforced Aluminium Matrix Composites Fabricated by an Ultrasonic Cavitation-Assisted Solidification Process. Transactions of the Indian Institute of Metals, 70(1), 17–29. http://dx.doi.org/10.1007/s12666-016-0856-1
  • Çelebi, M., Çanakçı, A., Güler, O., Özkaya, S., Karabacak, A. H., & Arpacı, K. A. (2022). Investigation of Microstructure, Hardness and Wear Properties of Hybrid Nanocomposites with Al2024 Matrix and Low Contents of B4C and h-BN Nanoparticles Produced by Mechanical Milling Assisted Hot Pressing. JOM, 74(11), 4449–4461.
  • Preethi., K., Raju, R., & Shivappa, H.A. (2021). Development and Characterization of Carbon Nanotube Reinforced Aluminium-6061 Metal Matrix Composites. Journal of Minerals and Materials Characterization and Engineering, 09(03), 290–300. https://doi.org/10.4236/jmmce.2021.93020
  • Ul Haq, M. I., & Anand, A. (2019). Friction and Wear Behavior of AA 7075- Si3N4 Composites Under Dry Conditions: Effect of Sliding Speed. Silicon, 11(2), 1047–1053. https://doi.org/10.1007/s12633-018-9967-0

Characterization and analysis of carbon fiber and nano hBN reinforced hybrid Aluminium Metal Matrix Composites by conventional sintering

Year 2025, Volume: 9 Issue: 2, 378 - 384
https://doi.org/10.31127/tuje.1532430

Abstract

As mono composites focus solely on improving one property at a time, the significance of hybrid composites grows day by day. The incorporation of carbon fiber (CF) and nano hexagonal boron nitride (hBN) particles as reinforcement for Aluminium has gained significant popularity because of their superior properties. In this work, the AA 7050 is reinforced with carbon fiber and nano hBN and fabricated by powder metallurgy method. To achieve an effective nanoparticle distribution in the matrix, premixing of the particles was done. The reinforcements were effectively dispersed by ball milling, and the composite was created using a traditional powder metallurgy. Dispersion of the particles in the matrix was analyzed by optical microscope. The effect of adding reinforcement to the matrix was investigated using properties such as micro hardness and compression test, and wear characterization. A significant increase in mechanical and wear properties was achieved for the combination of 0.25 wt. % carbon fiber and 0.5 wt. % hBN addition due to the uniform dispersion of nano particles along with the carbon fiber presence. This study provides insight into the importance of hybrid Aluminium nano composites for high strength applications.

References

  • Kaliyannan, P., Seikh, A. H., Kalam, M. A., & Venkatesh, R. (2024). Fabrication and Characteristics Study of Aluminium Alloy Hybrid Nanocomposite Synthesized with SiC and Waste Metal Powder. Silicon, 16(2), 843–851. https://doi.org/10.1007/s12633-023-02727-6
  • Tharanikumar, L., Mohan, B., & Anbuchezhiyan, G. (2024). Synthesization and Characterization of Silicon Carbide and Boron Nitride-Reinforced Al–Zn–Mg Alloy Hybrid Nanocomposites Using Squeeze Casting Method. International Journal of Metalcasting, 18(2), 997–1011. https://doi.org/10.1007/s40962-023-01070-1
  • Hynes, N. R. J., Raja, S., Tharmaraj, R., Pruncu, C. I., & Dispinar, D. (2020). Mechanical and tribological characteristics of boron carbide reinforcement of AA6061 matrix composite. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(4), 155. https://doi.org/10.1007/s40430-020-2237-2
  • Czerwinski, F. (2020). Thermal stability of aluminum alloys. Materials, 13, 3441. https://doi.org/10.3390/ma13153441
  • Menachery, N., Thomas, S., Deepanraj, B., & Senthilkumar, N. (2023). Processing of nanoreinforced aluminium hybrid metal matrix composites and the effect of post-heat treatment: a review. Applied Nanoscience, 13, 4075–4099. https://doi.org/10.1007/s13204-022-02704-2
  • Durowaye, S., Sekunowo, O., Bolasodun, B., Oduaran, I., & Lawal, G. (2019). Mechanical and wear characterisation of quarry tailings reinforced A6063 metal matrix composites, Turkish Journal of Engineering, 3(3), 133–139. https://doi.org/10.31127/tuje.490509
  • Singh, V. P., Patel, S. K., Ranjan, A., & Kuriachen, B. (2020). Recent research progress in solid state friction-stir welding of aluminium–magnesium alloys: a critical review. Journal of Materials Research and Technology, 9(3), 6217–6256. https://doi.org/10.1016/j.jmrt.2020.01.008
  • Dhinakarraj, C.K., Senthilkumar, N., Palanikumar, K., & Deepanraj, B. (2024). Machinability evaluation of magnesium composite using response surface methodology and nature-inspired metaheuristic algorithms. International Journal on Interactive Design and Manufacturing, https://doi.org/10.1007/s12008-024-01866-3.
  • Senthilkumar, N. (2024). Characterization of Graphene and Titanium Carbide Reinforced Magnesium Alloy Composite for Transmission Housings in Automobile, SAE Technical Paper, 2024-01-5231. https://doi.org/10.4271/2024-01-5231
  • Madhavarao, S., Raju, Ch. R., Madhukiran, J., Sudheerkumar Varma, N., & Ravi Varma, P. (2018). A Study of Tribological Behaviour of Aluminum-7075/SiC Metal Matrix Composite. Materials Today: Proceedings, 5(9, Part 3), 20013–20022. https://doi.org/10.1016/j.matpr.2018.06.368
  • Choi, H. J., Shin, J. H., & Bae, D. H. (2012). The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites. Composites Part A: Applied Science and Manufacturing, 43(7), 1061–1072. https://doi.org/10.1016/j.compositesa.2012.02.008
  • Singh, R., Hussain, S. A. I., Dash, A., & Rai, R. N. (2020). Modelling and optimizing performance parameters in the wire-electro discharge machining of Al5083/B4C composite by multi-objective response surface methodology. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(6), 344. https://doi.org/10.1007/s40430-020-02418-y
  • Singh, K., Singh, H., Vardhan, S., & Mohan, S. (2021). Mechanical study of Al 7050 and Al 7075 based metal matrix composites: A review. Materials Today: Proceedings, 43, 673–677. https://doi.org/10.1016/j.matpr.2020.12.601
  • Gezer, U., Demir, B., Kepir, Y., Günöz, A., Kara, M. (2023). A numerical study on the low-velocity impact response of hybrid composite materials, Turkish Journal of Engineering, 7(4), 314–321. https://doi.org/10.31127/tuje.1191785
  • Pillari, L. K., Umasankar, V., Elamathi, P., & Chandrasekar, G. (2016). Synthesis and characterization of nano hexagonal boron nitride powder and evaluating the influence on aluminium alloy matrix. Materials Today: Proceedings, 3(6), 2018–2026. https://doi.org/10.1016/j.matpr.2016.04.104
  • Elly, O. I., & Yang, Y. (2024). Feed optimization based on force modelling and TLBO algorithm in milling Al 7075. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46(5), 287.
  • Günöz, A., Kepir, Y., & Kara, M. (2022). The investigation of hardness and density properties of GFRP composite pipes under seawater conditions. Turkish Journal of Engineering, 6 (1), 34-39. http://dx.doi.org/10.31127/tuje.775536
  • Senthil, V., Balasubramanian, E., Raju, G.S., & Senthilkumar, N. (2024). Drilling Studies on MWCNT- and Zirconia-Reinforced Aluminium Alloy 8011 Hybrid Composite: A Machine Learning Approach. Arabian Journal for Science and Engineering, 49, 14741–14762. https://doi.org/10.1007/s13369-024-08792-2
  • Zhou, X., Gao, Y., Wang, Y., Lu, X., & Li, Y. (2021). Fabrication and characteristic of 2024Al matrix composites reinforced by carbon fibers and ZrCp by spark plasma sintering. Journal of Alloys and Compounds, 889, 161543. https://doi.org/10.1016/j.jallcom.2021.161543
  • Islam, M. U., & Wallace, W. (1988). Carbon fibre reinforced aluminium matrix composites. A critical review. Advanced Materials and Manufacturing Processes, 3(1), 1–35. https://doi.org/10.1080/08842588708953194
  • Prakash, D. S., Balaji, V., Rajesh, D., Anand, P., & Karthick, M. (2022). Experimental investigation of nano reinforced aluminium-based metal matrix composites. Materials Today: Proceedings, 54, 852–857. https://doi.org/10.1016/j.matpr.2021.11.189
  • Thomas, S., & Umasankar, V. (2019). Review of Recent Progress in the Development and Properties of Aluminum Metal Matrix Composites Reinforced with Multiwalled Carbon Nanotube by Powder Metallurgy Route. Materials Performance and Characterization, 8(3), 371–400. http://dx.doi.org/10.1520/MPC20180140
  • Venkatesh, L., Arjunan, T. V, & Ravikumar, K. (2019). Microstructural characteristics and mechanical behaviour of aluminium hybrid composites reinforced with groundnut shell ash and B4C. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(7), 295. http://dx.doi.org/10.1007/s40430-019-1800-1
  • Parikh, V. K., Badheka, V. J., Badgujar, A. D., & Ghetiya, N. D. (2021). Fabrication and processing of aluminum alloy metal matrix composites. Materials and Manufacturing Processes, 36(14), 1604–1617.
  • Mobasherpour, I., Tofigh, A. A., & Ebrahimi, M. (2013). Effect of nano-size Al2O3 reinforcement on the mechanical behavior of synthesis 7075 aluminum alloy composites by mechanical alloying. Materials Chemistry and Physics, 138(2), 535–541. https://doi.org/10.1016/j.matchemphys.2012.12.015
  • Thomas, S., Pillari, L. K., Umasankar, V., & Pious, J. (2019). Effect of sonication in enhancing the uniformity of MWCNT distribution in aluminium alloy AA2219 matrix. Materials Today: Proceedings, 18, 4058–4066. https://doi.org/10.1016/j.matpr.2019.07.349
  • Harichandran, R., Selvakumar, N., & Venkatachalam, G. (2017). High Temperature Wear Behaviour of Nano/Micro B4C Reinforced Aluminium Matrix Composites Fabricated by an Ultrasonic Cavitation-Assisted Solidification Process. Transactions of the Indian Institute of Metals, 70(1), 17–29. http://dx.doi.org/10.1007/s12666-016-0856-1
  • Çelebi, M., Çanakçı, A., Güler, O., Özkaya, S., Karabacak, A. H., & Arpacı, K. A. (2022). Investigation of Microstructure, Hardness and Wear Properties of Hybrid Nanocomposites with Al2024 Matrix and Low Contents of B4C and h-BN Nanoparticles Produced by Mechanical Milling Assisted Hot Pressing. JOM, 74(11), 4449–4461.
  • Preethi., K., Raju, R., & Shivappa, H.A. (2021). Development and Characterization of Carbon Nanotube Reinforced Aluminium-6061 Metal Matrix Composites. Journal of Minerals and Materials Characterization and Engineering, 09(03), 290–300. https://doi.org/10.4236/jmmce.2021.93020
  • Ul Haq, M. I., & Anand, A. (2019). Friction and Wear Behavior of AA 7075- Si3N4 Composites Under Dry Conditions: Effect of Sliding Speed. Silicon, 11(2), 1047–1053. https://doi.org/10.1007/s12633-018-9967-0
There are 30 citations in total.

Details

Primary Language English
Subjects Materials Science and Technologies
Journal Section Articles
Authors

Nice Menachery This is me 0000-0001-9711-5039

Balakrishnan Deepanraj 0000-0001-8986-6692

Shijo Thomas This is me 0000-0002-9325-3925

Early Pub Date January 20, 2025
Publication Date
Submission Date August 13, 2024
Acceptance Date October 1, 2024
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Menachery, N., Deepanraj, B., & Thomas, S. (n.d.). Characterization and analysis of carbon fiber and nano hBN reinforced hybrid Aluminium Metal Matrix Composites by conventional sintering. Turkish Journal of Engineering, 9(2), 378-384. https://doi.org/10.31127/tuje.1532430
AMA Menachery N, Deepanraj B, Thomas S. Characterization and analysis of carbon fiber and nano hBN reinforced hybrid Aluminium Metal Matrix Composites by conventional sintering. TUJE. 9(2):378-384. doi:10.31127/tuje.1532430
Chicago Menachery, Nice, Balakrishnan Deepanraj, and Shijo Thomas. “Characterization and Analysis of Carbon Fiber and Nano HBN Reinforced Hybrid Aluminium Metal Matrix Composites by Conventional Sintering”. Turkish Journal of Engineering 9, no. 2 n.d.: 378-84. https://doi.org/10.31127/tuje.1532430.
EndNote Menachery N, Deepanraj B, Thomas S Characterization and analysis of carbon fiber and nano hBN reinforced hybrid Aluminium Metal Matrix Composites by conventional sintering. Turkish Journal of Engineering 9 2 378–384.
IEEE N. Menachery, B. Deepanraj, and S. Thomas, “Characterization and analysis of carbon fiber and nano hBN reinforced hybrid Aluminium Metal Matrix Composites by conventional sintering”, TUJE, vol. 9, no. 2, pp. 378–384, doi: 10.31127/tuje.1532430.
ISNAD Menachery, Nice et al. “Characterization and Analysis of Carbon Fiber and Nano HBN Reinforced Hybrid Aluminium Metal Matrix Composites by Conventional Sintering”. Turkish Journal of Engineering 9/2 (n.d.), 378-384. https://doi.org/10.31127/tuje.1532430.
JAMA Menachery N, Deepanraj B, Thomas S. Characterization and analysis of carbon fiber and nano hBN reinforced hybrid Aluminium Metal Matrix Composites by conventional sintering. TUJE.;9:378–384.
MLA Menachery, Nice et al. “Characterization and Analysis of Carbon Fiber and Nano HBN Reinforced Hybrid Aluminium Metal Matrix Composites by Conventional Sintering”. Turkish Journal of Engineering, vol. 9, no. 2, pp. 378-84, doi:10.31127/tuje.1532430.
Vancouver Menachery N, Deepanraj B, Thomas S. Characterization and analysis of carbon fiber and nano hBN reinforced hybrid Aluminium Metal Matrix Composites by conventional sintering. TUJE. 9(2):378-84.
Flag Counter