Nano-silica integration for superior properties in potassium feldspar-based phosphoric acid activated geopolymers: A sustainable approach
Year 2025,
Volume: 9 Issue: 2, 211 - 221
M Nanthini
,
R Ganesan
,
V Jaganathan
Abstract
This study investigates the potential of Potassium Feldspar-phosphate-based geopolymer concrete as a sustainable alternative to conventional concrete, addressing the environmental concerns associated with CO2 emissions during cement production. While geopolymer concrete offers a promising path toward sustainability, its performance often falls short of Portland cement concrete. This study investigates utilizing nano-silica (NS) to enhance the performance of geopolymer concrete. Potassium feldspar powder, metakaolin, and rice husk ash were combined to create a ternary mixture that included different amounts of NS. The resulting geopolymer composition's mechanical characteristics were assessed. The mechanical qualities were evaluated using split tensile (STS) and compressive strength tests (CS). The findings revealed that a 4% NS dosage (GC-N4) yielded the most significant improvement in strength and durability. The GC-N4 mix performed superior in all metrics, demonstrating the highest compressive (42.86 MPa) and STS (3.8 Mpa) strengths. Reduction in water absorption and durability aspects were also optimum in GC-N4. These results highlight the potential of incorporating NS into a ternary mix of potassium feldspar powder, metakaolin, and rice husk ash to significantly enhance the overall performance of geopolymer concrete, promoting its wider adoption as a sustainable construction material.
References
- Awoyera, P., & Adesina, A. (2019). A critical review on application of alkali activated slag as a sustainable composite binder. Case Studies in Construction Materials, 11, e00268. https://doi.org/10.1016/J.CSCM.2019.E00268.
- Almutairi, A. L., Tayeh, B. A., Adesina, A., Isleem, H. F., & Zeyad, A. M. (2021). Potential applications of geopolymer concrete in construction: A review. Case Studies in Construction Materials, 15, e00733. https://doi.org/10.1016/J.CSCM.2021.E00733.
- Okoye, F. N., Durgaprasad, J., & Singh, N. B. (2015). Mechanical properties of alkali-activated flyash/Kaolin based geopolymer concrete. Construction and Building Materials, 98, 685–691. https://doi.org/10.1016/j.conbuildmat.2015.08.009.
- Bingöl, Ş., Bilim, C., Atiş, C., Durak, U. (2022). Freeze-thaw resistance of blast furnace slag alkali activated mortars. Turkish Journal of Engineering, 6(1), 63-66. https://doi.org/10.31127/tuje.810937.
- Zhang, H. Y., Kodur, V., Qi, S. L., Cao, L., & Wu, B. (2020). Development of metakaolin–fly ash-based geopolymers for fire resistance applications. Construction and Building Materials, 55, 38-45. https://doi.org/10.1016/j.conbuildmat.2014.01.040
- Jesus, S., Maia, C., Brazão Farinha, C., de Brito, J., & Veiga, R. (2019). Rendering mortars with incorporation of very fine aggregates from construction and demolition waste. Construction and Building Materials, 229, 116844. https://doi.org/10.1016/J.CONBUILDMAT.2019.116844.
- Zuhua, Z., Xiao, Y., Huajun, Z., & Yue, C. (2009). Role of water in the synthesis of calcined kaolin-based geopolymer. Applied Clay Science, 43(2), 218-223. https://doi.org/10.1016/j.clay.2008.09.003.
- Zhuang, X., Chen, L., Komarneni, S., Zhou, C., Tong, D., Yang, H., & Zhang, L. (2016). Fly ash-based geopolymer: clean production, properties, and applications. Journal of Cleaner Production, 125, 253-267. http://dx.doi.org/10.1016/j.jclepro.2016.03.019.
- Li, C., Sun, H., & Li, L. (2010). A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cement and Concrete Research, 40(9), 1341–1349. https://doi.org/10.1016/J.CEMCONRES.2010.03.020.
- Rowles, M., & O’Connor, B. (2003). Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. Journal of Materials Chemistry, 13(5), 1161–1165. https://doi.org/10.1039/b212629j.
- Gao, Y., Zhou, W., Zeng, W., Pei, G., & Duan, K. (2021). Preparation and flexural fatigue resistance of self-compacting road concrete incorporating nano-silica particles. Construction and Building Materials, 278. https://doi.org/10.1016/J.CONBUILDMAT.2021.122380.
- Yu, G., & Jia, Y. (2022). Microstructure and Mechanical Properties of Fly Ash-Based Geopolymer Cementitious Composites. Minerals, 12(7). https://doi.org/10.3390/min12070853.
- Adewuyi, Y. G. (2021). Recent Advances in Fly-Ash-Based Geopolymers: Potential on the Utilization for Sustainable Environmental Remediation. In ACS Omega (Vol. 6, Issue 24, pp. 15532–15542). American Chemical Society. https://doi.org/10.1021/acsomega.1c00662.
- Rao, B. N. M., Durga, C. S. S., Venkatesh, C., Rao, T. M. (2024). Sustainable Geopolymer Concrete for Pavements: Performance Evaluation of Recycled Concrete Aggregates in Fly Ash-Based Mixtures. Journal of Sustainable Construction Materials and Technologies, 9(3),211-220. https://doi.org/10.47481/jscmt.1554284.
- Öztürk, O., & Türköz, M. (2022). Effect of silica fume on the undrained strength parameters of dispersive. Turkish Journal of Engineering, 6(4), 293-299. https://doi.org/10.31127/tuje.1001413.
- Hardjito, D., Cheak, C. C., & Lee Ing, C. H. (2008). Strength and Setting Times of Low Calcium Fly Ash-based Geopolymer Mortar. Modern Applied Science, 2(4). https://doi.org/10.5539/mas.v2n4p3.
- Fernández-Jiménez, A., Palomo, A., & Criado, M. (2005). Microstructure development of alkali-activated fly ash cement: a descriptive model. Cement and Concrete Research, 35(6), 1204–1209. https://doi.org/10.1016/J.CEMCONRES.2004.08.021
.
Unis Ahmed, H., Mahmood, L. J., Muhammad, M. A., Faraj, R. H., Qaidi, S. M. A., Hamah Sor, N., Mohammed, A. S., & Mohammed, A. A. (2022). Geopolymer concrete as a cleaner construction material: An overview on materials and structural performances. Cleaner Materials, 5, 100111. https://doi.org/10.1016/J.CLEMA.2022.100111.
- Criado, M., Aperador, W., & Sobrados, I. (2016). Microstructural and mechanical properties of alkali activated Colombian raw materials. Materials, 9(3). https://doi.org/10.3390/ma9030158.
- Zhang, F., Xi, X., & Yang, S. (2021). Research Progress in Corrosion Mechanism of Reinforced Alkali-Activated Concrete Structures. In Corrosion and Materials Degradation (Vol. 2, Issue 4, pp. 641–656). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/cmd2040034.
- Verma, M., Dev, N., Rahman, I., Nigam, M., Ahmed, M., & Mallick, J. (2022). Geopolymer Concrete: A Material for Sustainable Development in Indian Construction Industries. https://doi.org/10.3390/cryst
- Bayer, İ. R., Turanlı, L., & Mehta, P. K. (2019). MASS CONCRETE CONSTRUCTION USING SELF-COMPACTING MORTAR. Turkish Journal of Engineering, 3(3), 110-119. https://doi.org/10.31127/tuje.462548.
- Mansi, A., Sor, N. H., Hilal, N., & Qaidi, S. M. A. (2022). The Impact of Nano Clay on Normal and High-Performance Concrete Characteristics: A Review. IOP Conference Series: Earth and Environmental Science, 961(1). https://doi.org/10.1088/1755-1315/961/1/012085.
- Wang, A., Zheng, Y., Zhang, Z., Liu, K., Li, Y., Shi, L., & Sun, D. (2020). The Durability of Alkali-Activated Materials in Comparison with Ordinary Portland Cements and Concretes: A Review. In Engineering (Vol. 6, Issue 6, pp. 695–706). Elsevier Ltd. https://doi.org/10.1016/j.eng.2019.08.019.
- Fernández-Jiménez, A., Palomo, A., & Criado, M. (2005). Microstructure Development of Alkali-Activated Fly Ash Cement: A Descriptive Model. Cement and Concrete Research, 35, 1204-1209. https://doi.org/10.1016/j.cemconres.2004.08.021.
- Nazari, A., Khanmohammadi, H., Amini, M., Hajiallahyari, H., & Rahimi, A. (2012). Production geopolymers by Portland cement: Designing the main parameters’ effects on compressive strength by Taguchi method. Materials & Design, 41, 43–49. https://doi.org/10.1016/J.MATDES.2012.04.045.
- Tanyildizi, M., Karaca, E. O., Bozkurt, N., Tanyıldızı, M., & Ozan Karaca, E. (n.d.). Engineering Applications (Vol. 2022, Issue 1). http://publish.mersin.edu.tr/index.php/enap.
- Karakurt, A. B., & Ertuğrul, Ö. L. (2023). A laboratory study on the liquid limits of cohesive soils improved with rice hush ash. Advanced Engineering Science, 3, 8–14. http://publish.mersin.edu.tr/index.php/ades.
- Celik, K., Meral, C., Mancio, M., Mehta, P. K., & Monteiro, P. J. M. (2014). A comparative study of self-consolidating concretes incorporating high-volume natural pozzolan or high-volume fly ash. Construction and Building Materials, 67, 14–19. https://doi.org/10.1016/j.conbuildmat.2013.11.065.
- Cornelis, R., Priyosulistyo, H., & Satyarno, I. (n.d.). Workability and Strength Properties of Class C Fly Ash-Based Geopolymer Mortar. https://doi.org/10.1051/matecconf/20192.
- Lam, T. van, & Nguyen, M. H. (2023). Incorporating Industrial By-Products into Geopolymer Mortar: Effects on Strength and Durability. Materials, 16(12). https://doi.org/10.3390/ma16124406.
- Sathish Kumar, V., Ganesan, N., & Indira, P. v. (2021). Effect of hybrid fibres on the durability characteristics of ternary blend geopolymer concrete. Journal of Composites Science, 5(10). https://doi.org/10.3390/jcs5100279.
- Davidovits, J. (1991). Geopolymers - inorganic polymeric new materials. Journal of Thermal Analysis and Calorimetry, 37(8), 1633-1656.
- Fernández-Jiménez, A., Palomo, A., & Criado, M. (2006). Alkali activated fly ash binders. A comparative study between sodium and potassium activators. Materiales De Construcción, 56(281), 51–65. https://doi.org/10.3989/mc.2006.v56.i281.92.
- Abhishek, H. S., Prashant, S., Kamath, M. v., & Kumar, M. (2022). Fresh mechanical and durability properties of alkali-activated fly ash-slag concrete: a review. In Innovative Infrastructure Solutions (Vol. 7, Issue 1). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s41062-021-00711-w.
- Nanthini, M., Ganesan, R., & Jaganathan, V. (2024). Studies on Alkaline Activator, Manufacturing Methods and Mechanical Properties of Geopolymer Concrete-A Review. In Journal of Environmental Nanotechnology (Vol. 13, Issue 3, pp. 52–72). Institute for Environmental Nanotechnology. https://doi.org/10.13074/jent.2024.09.242753.
- Mohd Mortar, N. A., Abdullah, M. M. A. B., Abdul Razak, R., Abd Rahim, S. Z., Aziz, I. H., Nabiałek, M., Jaya, R. P., Semenescu, A., Mohamed, R., & Ghazali, M. F. (2022). Geopolymer Ceramic Application: A Review on Mix Design, Properties and Reinforcement Enhancement. In Materials (Vol. 15, Issue 21). MDPI. https://doi.org/10.3390/ma15217567.
- Zhang, A., Yang, W., Ge, Y., Du, Y., & Liu, P. (2021). Effects of nano-SiO2 and nano-Al2O3 on mechanical and durability properties of cement-based materials: A comparative study. Journal of Building Engineering, 34, 101936. https://doi.org/10.1016/J.JOBE.2020.101936.
- Heah, C. Y., Kamarudin, H., Mustafa Al Bakri, A. M., Bnhussain, M., Luqman, M., Khairul Nizar, I., Ruzaidi, C. M., & Liew, Y. M. (2012). Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Construction and Building Materials, 35, 912–922. https://doi.org/10.1016/J.CONBUILDMAT.2012.04.102.
- Zuhua, Z., Xiao, Y., Huajun, Z., & Yue, C. (2009). Role of water in the synthesis of calcined kaolin-based geopolymer. Applied Clay Science, 43(2), 218–223. https://doi.org/10.1016/J.CLAY.2008.09.003.
- Liew, Y. M., Kamarudin, H., Mustafa Al Bakri, A. M., Binhussain, M., Luqman, M., Khairul Nizar, I., Ruzaidi, C. M., & Heah, C. Y. (2011). Influence of Solids-to-liquid and Activator Ratios on Calcined Kaolin Cement Powder. Physics Procedia, 22, 312–317. https://doi.org/10.1016/J.PHPRO.2011.11.049.
- Ak, P., & Priya, A. K. (2015). A Review on Eco-Green Geopolymer Concrete. In International Journal of Science and Research (Vol. 6). https://www.researchgate.net/publication/324794565.
- Vogt, O., Ukrainczyk, N., & Koenders, E. (2021). Effect of silica fume on metakaolin geopolymers’ sulfuric acid resistance. Materials, 14(18). https://doi.org/10.3390/ma14185396.
- García-Mejía, T. A., & de Lourdes Chávez-García, Ma. (2016). Compressive Strength of Metakaolin-Based Geopolymers: Influence of KOH Concentration, Temperature, Time and Relative Humidity. Materials Sciences and Applications, 07(11), 772–791. https://doi.org/10.4236/msa.2016.711060.
- Liu, Y., Mohammed, Z. M. A., Ma, J., Xia, R., Fan, D., Tang, J., & Yuan, Q. (2024). Machine Learning Driven Fluidity and Rheological Properties Prediction of Fresh Cement-Based Materials. Materials, 17(22). https://doi.org/10.3390/ma17225400.
- Veerapandian, V., Pandulu, G., Jayaseelan, R., Kumar, V. S., Murali, G., & Vatin, N. I. (2022). Numerical Modelling of Geopolymer Concrete In-Filled Fibre-Reinforced Polymer Composite Columns Subjected to Axial Compression Loading. Materials, 15(9). https://doi.org/10.3390/ma15093390.
- Almutairi, A. L., Tayeh, B. A., Adesina, A., Isleem, H. F., & Zeyad, A. M. (2021). Potential applications of geopolymer concrete in construction: A review. Case Studies in Construction Materials, 15, e00733. https://doi.org/10.1016/J.CSCM.2021.E00733.
- Awoyera, P., & Adesina, A. (2019). A critical review on application of alkali activated slag as a sustainable composite binder. Case Studies in Construction Materials, 11, e00268. https://doi.org/10.1016/J.CSCM.2019.E00268.
- Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials, 237, 117455. https://doi.org/10.1016/J.CONBUILDMAT.2019.117455.
- Raj R, S., Arulraj, G. P., Anand, N., Kanagaraj, B., & Lubloy, E. (2024). Influence of Nano-Fly Ash on mechanical properties, microstructure characteristics and sustainability analysis of Alkali Activated Concrete. Developments in the Built Environment, 17, 100352. https://doi.org/10.1016/J.DIBE.2024.100352.
- Murali, G., & Azab, M. (2023). Recent research in utilization of phosphogypsum as building materials: Review. Journal of Materials Research and Technology, 25, 960–987. https://doi.org/10.1016/J.JMRT.2023.05.272.
- Reed, R. G., Daniels III, J., & Hale, W. M. (2018). Development of Geopolymer Mortar for Field Applications. Solid State Phenomena, 272, 280–283. https://doi.org/10.4028/www.scientific.net/ssp.272.280
- Murali, G. (2024). Recent research in mechanical properties of geopolymer-based ultra-high-performance concrete: A review. Defence Technology, 32, 67–88. https://doi.org/10.1016/J.DT.2023.07.003.
- Kumar Veerappan, S., Indira, P. V. I., & Ganesan, N. (n.d.). Tension stiffening and cracking behaviour of hybrid fibre reinforced ternary blend geopolymer concrete. https://www.researchgate.net/publication/339472067.
- Gopika, M., Ganesan, N., Indira, P. V., Kumar, V. S., Murali, G., & Vatin, N. I. (2022). Influence of Steel Fibers on the Interfacial Shear Strength of Ternary Blend Geopolymer Concrete Composite. Sustainability (Switzerland), 14(13). https://doi.org/10.3390/su14137724.
- Fernández-Álvarez, M., Velasco, F., Bautista, A., & Abenojar, J. (2020). Effect of silica nanoparticles on the curing kinetics and erosion wear of an epoxy powder coating. Journal of Materials Research and Technology, 9(1), 455–464. https://doi.org/10.1016/J.JMRT.2019.10.073.
Year 2025,
Volume: 9 Issue: 2, 211 - 221
M Nanthini
,
R Ganesan
,
V Jaganathan
References
- Awoyera, P., & Adesina, A. (2019). A critical review on application of alkali activated slag as a sustainable composite binder. Case Studies in Construction Materials, 11, e00268. https://doi.org/10.1016/J.CSCM.2019.E00268.
- Almutairi, A. L., Tayeh, B. A., Adesina, A., Isleem, H. F., & Zeyad, A. M. (2021). Potential applications of geopolymer concrete in construction: A review. Case Studies in Construction Materials, 15, e00733. https://doi.org/10.1016/J.CSCM.2021.E00733.
- Okoye, F. N., Durgaprasad, J., & Singh, N. B. (2015). Mechanical properties of alkali-activated flyash/Kaolin based geopolymer concrete. Construction and Building Materials, 98, 685–691. https://doi.org/10.1016/j.conbuildmat.2015.08.009.
- Bingöl, Ş., Bilim, C., Atiş, C., Durak, U. (2022). Freeze-thaw resistance of blast furnace slag alkali activated mortars. Turkish Journal of Engineering, 6(1), 63-66. https://doi.org/10.31127/tuje.810937.
- Zhang, H. Y., Kodur, V., Qi, S. L., Cao, L., & Wu, B. (2020). Development of metakaolin–fly ash-based geopolymers for fire resistance applications. Construction and Building Materials, 55, 38-45. https://doi.org/10.1016/j.conbuildmat.2014.01.040
- Jesus, S., Maia, C., Brazão Farinha, C., de Brito, J., & Veiga, R. (2019). Rendering mortars with incorporation of very fine aggregates from construction and demolition waste. Construction and Building Materials, 229, 116844. https://doi.org/10.1016/J.CONBUILDMAT.2019.116844.
- Zuhua, Z., Xiao, Y., Huajun, Z., & Yue, C. (2009). Role of water in the synthesis of calcined kaolin-based geopolymer. Applied Clay Science, 43(2), 218-223. https://doi.org/10.1016/j.clay.2008.09.003.
- Zhuang, X., Chen, L., Komarneni, S., Zhou, C., Tong, D., Yang, H., & Zhang, L. (2016). Fly ash-based geopolymer: clean production, properties, and applications. Journal of Cleaner Production, 125, 253-267. http://dx.doi.org/10.1016/j.jclepro.2016.03.019.
- Li, C., Sun, H., & Li, L. (2010). A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cement and Concrete Research, 40(9), 1341–1349. https://doi.org/10.1016/J.CEMCONRES.2010.03.020.
- Rowles, M., & O’Connor, B. (2003). Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. Journal of Materials Chemistry, 13(5), 1161–1165. https://doi.org/10.1039/b212629j.
- Gao, Y., Zhou, W., Zeng, W., Pei, G., & Duan, K. (2021). Preparation and flexural fatigue resistance of self-compacting road concrete incorporating nano-silica particles. Construction and Building Materials, 278. https://doi.org/10.1016/J.CONBUILDMAT.2021.122380.
- Yu, G., & Jia, Y. (2022). Microstructure and Mechanical Properties of Fly Ash-Based Geopolymer Cementitious Composites. Minerals, 12(7). https://doi.org/10.3390/min12070853.
- Adewuyi, Y. G. (2021). Recent Advances in Fly-Ash-Based Geopolymers: Potential on the Utilization for Sustainable Environmental Remediation. In ACS Omega (Vol. 6, Issue 24, pp. 15532–15542). American Chemical Society. https://doi.org/10.1021/acsomega.1c00662.
- Rao, B. N. M., Durga, C. S. S., Venkatesh, C., Rao, T. M. (2024). Sustainable Geopolymer Concrete for Pavements: Performance Evaluation of Recycled Concrete Aggregates in Fly Ash-Based Mixtures. Journal of Sustainable Construction Materials and Technologies, 9(3),211-220. https://doi.org/10.47481/jscmt.1554284.
- Öztürk, O., & Türköz, M. (2022). Effect of silica fume on the undrained strength parameters of dispersive. Turkish Journal of Engineering, 6(4), 293-299. https://doi.org/10.31127/tuje.1001413.
- Hardjito, D., Cheak, C. C., & Lee Ing, C. H. (2008). Strength and Setting Times of Low Calcium Fly Ash-based Geopolymer Mortar. Modern Applied Science, 2(4). https://doi.org/10.5539/mas.v2n4p3.
- Fernández-Jiménez, A., Palomo, A., & Criado, M. (2005). Microstructure development of alkali-activated fly ash cement: a descriptive model. Cement and Concrete Research, 35(6), 1204–1209. https://doi.org/10.1016/J.CEMCONRES.2004.08.021
.
Unis Ahmed, H., Mahmood, L. J., Muhammad, M. A., Faraj, R. H., Qaidi, S. M. A., Hamah Sor, N., Mohammed, A. S., & Mohammed, A. A. (2022). Geopolymer concrete as a cleaner construction material: An overview on materials and structural performances. Cleaner Materials, 5, 100111. https://doi.org/10.1016/J.CLEMA.2022.100111.
- Criado, M., Aperador, W., & Sobrados, I. (2016). Microstructural and mechanical properties of alkali activated Colombian raw materials. Materials, 9(3). https://doi.org/10.3390/ma9030158.
- Zhang, F., Xi, X., & Yang, S. (2021). Research Progress in Corrosion Mechanism of Reinforced Alkali-Activated Concrete Structures. In Corrosion and Materials Degradation (Vol. 2, Issue 4, pp. 641–656). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/cmd2040034.
- Verma, M., Dev, N., Rahman, I., Nigam, M., Ahmed, M., & Mallick, J. (2022). Geopolymer Concrete: A Material for Sustainable Development in Indian Construction Industries. https://doi.org/10.3390/cryst
- Bayer, İ. R., Turanlı, L., & Mehta, P. K. (2019). MASS CONCRETE CONSTRUCTION USING SELF-COMPACTING MORTAR. Turkish Journal of Engineering, 3(3), 110-119. https://doi.org/10.31127/tuje.462548.
- Mansi, A., Sor, N. H., Hilal, N., & Qaidi, S. M. A. (2022). The Impact of Nano Clay on Normal and High-Performance Concrete Characteristics: A Review. IOP Conference Series: Earth and Environmental Science, 961(1). https://doi.org/10.1088/1755-1315/961/1/012085.
- Wang, A., Zheng, Y., Zhang, Z., Liu, K., Li, Y., Shi, L., & Sun, D. (2020). The Durability of Alkali-Activated Materials in Comparison with Ordinary Portland Cements and Concretes: A Review. In Engineering (Vol. 6, Issue 6, pp. 695–706). Elsevier Ltd. https://doi.org/10.1016/j.eng.2019.08.019.
- Fernández-Jiménez, A., Palomo, A., & Criado, M. (2005). Microstructure Development of Alkali-Activated Fly Ash Cement: A Descriptive Model. Cement and Concrete Research, 35, 1204-1209. https://doi.org/10.1016/j.cemconres.2004.08.021.
- Nazari, A., Khanmohammadi, H., Amini, M., Hajiallahyari, H., & Rahimi, A. (2012). Production geopolymers by Portland cement: Designing the main parameters’ effects on compressive strength by Taguchi method. Materials & Design, 41, 43–49. https://doi.org/10.1016/J.MATDES.2012.04.045.
- Tanyildizi, M., Karaca, E. O., Bozkurt, N., Tanyıldızı, M., & Ozan Karaca, E. (n.d.). Engineering Applications (Vol. 2022, Issue 1). http://publish.mersin.edu.tr/index.php/enap.
- Karakurt, A. B., & Ertuğrul, Ö. L. (2023). A laboratory study on the liquid limits of cohesive soils improved with rice hush ash. Advanced Engineering Science, 3, 8–14. http://publish.mersin.edu.tr/index.php/ades.
- Celik, K., Meral, C., Mancio, M., Mehta, P. K., & Monteiro, P. J. M. (2014). A comparative study of self-consolidating concretes incorporating high-volume natural pozzolan or high-volume fly ash. Construction and Building Materials, 67, 14–19. https://doi.org/10.1016/j.conbuildmat.2013.11.065.
- Cornelis, R., Priyosulistyo, H., & Satyarno, I. (n.d.). Workability and Strength Properties of Class C Fly Ash-Based Geopolymer Mortar. https://doi.org/10.1051/matecconf/20192.
- Lam, T. van, & Nguyen, M. H. (2023). Incorporating Industrial By-Products into Geopolymer Mortar: Effects on Strength and Durability. Materials, 16(12). https://doi.org/10.3390/ma16124406.
- Sathish Kumar, V., Ganesan, N., & Indira, P. v. (2021). Effect of hybrid fibres on the durability characteristics of ternary blend geopolymer concrete. Journal of Composites Science, 5(10). https://doi.org/10.3390/jcs5100279.
- Davidovits, J. (1991). Geopolymers - inorganic polymeric new materials. Journal of Thermal Analysis and Calorimetry, 37(8), 1633-1656.
- Fernández-Jiménez, A., Palomo, A., & Criado, M. (2006). Alkali activated fly ash binders. A comparative study between sodium and potassium activators. Materiales De Construcción, 56(281), 51–65. https://doi.org/10.3989/mc.2006.v56.i281.92.
- Abhishek, H. S., Prashant, S., Kamath, M. v., & Kumar, M. (2022). Fresh mechanical and durability properties of alkali-activated fly ash-slag concrete: a review. In Innovative Infrastructure Solutions (Vol. 7, Issue 1). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s41062-021-00711-w.
- Nanthini, M., Ganesan, R., & Jaganathan, V. (2024). Studies on Alkaline Activator, Manufacturing Methods and Mechanical Properties of Geopolymer Concrete-A Review. In Journal of Environmental Nanotechnology (Vol. 13, Issue 3, pp. 52–72). Institute for Environmental Nanotechnology. https://doi.org/10.13074/jent.2024.09.242753.
- Mohd Mortar, N. A., Abdullah, M. M. A. B., Abdul Razak, R., Abd Rahim, S. Z., Aziz, I. H., Nabiałek, M., Jaya, R. P., Semenescu, A., Mohamed, R., & Ghazali, M. F. (2022). Geopolymer Ceramic Application: A Review on Mix Design, Properties and Reinforcement Enhancement. In Materials (Vol. 15, Issue 21). MDPI. https://doi.org/10.3390/ma15217567.
- Zhang, A., Yang, W., Ge, Y., Du, Y., & Liu, P. (2021). Effects of nano-SiO2 and nano-Al2O3 on mechanical and durability properties of cement-based materials: A comparative study. Journal of Building Engineering, 34, 101936. https://doi.org/10.1016/J.JOBE.2020.101936.
- Heah, C. Y., Kamarudin, H., Mustafa Al Bakri, A. M., Bnhussain, M., Luqman, M., Khairul Nizar, I., Ruzaidi, C. M., & Liew, Y. M. (2012). Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Construction and Building Materials, 35, 912–922. https://doi.org/10.1016/J.CONBUILDMAT.2012.04.102.
- Zuhua, Z., Xiao, Y., Huajun, Z., & Yue, C. (2009). Role of water in the synthesis of calcined kaolin-based geopolymer. Applied Clay Science, 43(2), 218–223. https://doi.org/10.1016/J.CLAY.2008.09.003.
- Liew, Y. M., Kamarudin, H., Mustafa Al Bakri, A. M., Binhussain, M., Luqman, M., Khairul Nizar, I., Ruzaidi, C. M., & Heah, C. Y. (2011). Influence of Solids-to-liquid and Activator Ratios on Calcined Kaolin Cement Powder. Physics Procedia, 22, 312–317. https://doi.org/10.1016/J.PHPRO.2011.11.049.
- Ak, P., & Priya, A. K. (2015). A Review on Eco-Green Geopolymer Concrete. In International Journal of Science and Research (Vol. 6). https://www.researchgate.net/publication/324794565.
- Vogt, O., Ukrainczyk, N., & Koenders, E. (2021). Effect of silica fume on metakaolin geopolymers’ sulfuric acid resistance. Materials, 14(18). https://doi.org/10.3390/ma14185396.
- García-Mejía, T. A., & de Lourdes Chávez-García, Ma. (2016). Compressive Strength of Metakaolin-Based Geopolymers: Influence of KOH Concentration, Temperature, Time and Relative Humidity. Materials Sciences and Applications, 07(11), 772–791. https://doi.org/10.4236/msa.2016.711060.
- Liu, Y., Mohammed, Z. M. A., Ma, J., Xia, R., Fan, D., Tang, J., & Yuan, Q. (2024). Machine Learning Driven Fluidity and Rheological Properties Prediction of Fresh Cement-Based Materials. Materials, 17(22). https://doi.org/10.3390/ma17225400.
- Veerapandian, V., Pandulu, G., Jayaseelan, R., Kumar, V. S., Murali, G., & Vatin, N. I. (2022). Numerical Modelling of Geopolymer Concrete In-Filled Fibre-Reinforced Polymer Composite Columns Subjected to Axial Compression Loading. Materials, 15(9). https://doi.org/10.3390/ma15093390.
- Almutairi, A. L., Tayeh, B. A., Adesina, A., Isleem, H. F., & Zeyad, A. M. (2021). Potential applications of geopolymer concrete in construction: A review. Case Studies in Construction Materials, 15, e00733. https://doi.org/10.1016/J.CSCM.2021.E00733.
- Awoyera, P., & Adesina, A. (2019). A critical review on application of alkali activated slag as a sustainable composite binder. Case Studies in Construction Materials, 11, e00268. https://doi.org/10.1016/J.CSCM.2019.E00268.
- Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials, 237, 117455. https://doi.org/10.1016/J.CONBUILDMAT.2019.117455.
- Raj R, S., Arulraj, G. P., Anand, N., Kanagaraj, B., & Lubloy, E. (2024). Influence of Nano-Fly Ash on mechanical properties, microstructure characteristics and sustainability analysis of Alkali Activated Concrete. Developments in the Built Environment, 17, 100352. https://doi.org/10.1016/J.DIBE.2024.100352.
- Murali, G., & Azab, M. (2023). Recent research in utilization of phosphogypsum as building materials: Review. Journal of Materials Research and Technology, 25, 960–987. https://doi.org/10.1016/J.JMRT.2023.05.272.
- Reed, R. G., Daniels III, J., & Hale, W. M. (2018). Development of Geopolymer Mortar for Field Applications. Solid State Phenomena, 272, 280–283. https://doi.org/10.4028/www.scientific.net/ssp.272.280
- Murali, G. (2024). Recent research in mechanical properties of geopolymer-based ultra-high-performance concrete: A review. Defence Technology, 32, 67–88. https://doi.org/10.1016/J.DT.2023.07.003.
- Kumar Veerappan, S., Indira, P. V. I., & Ganesan, N. (n.d.). Tension stiffening and cracking behaviour of hybrid fibre reinforced ternary blend geopolymer concrete. https://www.researchgate.net/publication/339472067.
- Gopika, M., Ganesan, N., Indira, P. V., Kumar, V. S., Murali, G., & Vatin, N. I. (2022). Influence of Steel Fibers on the Interfacial Shear Strength of Ternary Blend Geopolymer Concrete Composite. Sustainability (Switzerland), 14(13). https://doi.org/10.3390/su14137724.
- Fernández-Álvarez, M., Velasco, F., Bautista, A., & Abenojar, J. (2020). Effect of silica nanoparticles on the curing kinetics and erosion wear of an epoxy powder coating. Journal of Materials Research and Technology, 9(1), 455–464. https://doi.org/10.1016/J.JMRT.2019.10.073.