Year 2025,
Volume: 9 Issue: 2, 313 - 322
N Mathan Kumar
,
Suresh Kumar Ramalingam
,
Kundan Bharti
,
P V Nandhakumar
,
M Yuvaperiyasamy
References
- Prater, T. (2014). Friction stir welding of metal matrix composites for use in aerospace structures. Acta Astronautica, 93, 366–373.
- Kumar, N. M., & Kumaraswamidhas, L. A. (2019). Characterization and tribological analysis on AA 6061 reinforced with AlN and ZrB2 in situ composites. Journal of Materials Research and Technology, 8(1), 969–980.
- Chawla, K. K., & Chawla, K. K. (1998). Metal matrix composites. Springer.
- Suresh, S. (2013). Fundamentals of metal-matrix composites. Elsevier.
- Das, H., Mondal, M., Hong, S.-T., Chun, D.-M., & Han, H. N. (2018). Joining and fabrication of metal matrix composites by friction stir welding/processing. International Journal of Precision Engineering and Manufacturing Technology, 5, 151–172.
- García, R., López, V. H., Kennedy, A. R., & Arias, G. (2007). Welding of Al-359/20% SiCp metal matrix composites by the novel MIG process with indirect electric arc (IEA). Journal of Materials Science, 42, 7794–7800.
- Reynolds, A. P. (2000). Visualisation of material flow in autogenous friction stir welds. Science and Technology of Welding and Joining, 5(2), 120–124.
- Threadgill, P. L., Leonard, A. J., Shercliff, H. R., & Withers, P. J. (2009). Friction stir welding of aluminium alloys. International Materials Reviews, 54(2), 49–93.
- Çam, G., & Mistikoglu, S. (2014). Recent developments in friction stir welding of Al-alloys. Journal of Materials Engineering and Performance, 23, 1936–1953.
- Guo, J. F., Chen, H. C., Sun, C. N., Bi, G., Sun, Z., & Wei, J. (2014). Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys: Effects of process parameters. Materials and Design, 56, 185–192.
- Chen, Y., Ding, H., Cai, Z., Zhao, J., & Li, J. (2017). Microstructural and mechanical characterization of a dissimilar friction stir-welded AA5083-AA7B04 butt joint. Journal of Materials Engineering and Performance, 26, 530–539.
- Steuwer, A., Peel, M. J., & Withers, P. J. (2006). Dissimilar friction stir welds in AA5083--AA6082: The effect of process parameters on residual stress. Materials Science and Engineering A, 441(1–2), 187–196.
- Peel, M. J., Steuwer, A., Withers, P. J., Dickerson, T., Shi, Q., & Shercliff, H. (2006). Dissimilar friction stir welds in AA5083-AA6082. Part I: Process parameter effects on thermal history and weld properties. Metallurgical and Materials Transactions A, 37, 2183–2193.
- Cavaliere, P., De Santis, A., Panella, F., & Squillace, A. (2009). Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082-AA2024 joints produced by friction stir welding. Materials and Design, 30(3), 609–616.
- Jonckheere, C., De Meester, B., Denquin, A., & Simar, A. (2013). Torque, temperature, and hardening precipitation evolution in dissimilar friction stir welds between 6061-T6 and 2014-T6 aluminum alloys. Journal of Materials Processing Technology, 213(6), 826–837.
- Tan, Y. B., et al. (2017). A study on microstructure and mechanical properties of AA 3003 aluminum alloy joints by underwater friction stir welding. Materials Characterization, 127, 41–52.
- Mehta, K. P., Carlone, P., Astarita, A., Scherillo, F., Rubino, F., & Vora, P. (2019). Conventional and cooling assisted friction stir welding of AA6061 and AZ31B alloys. Materials Science and Engineering A, 759, 252–261.
- Wang, Q., Zhao, Z., Zhao, Y., Yan, K., & Zhang, H. (2015). The adjustment strategy of welding parameters for spray-formed 7055 aluminum alloy underwater friction stir welding joint. Materials and Design, 88, 1366–1376.
- 19.Moradi, M. M., Aval, H. J., Jamaati, R., Amirkhanlou, S., & Ji, S. (2018). Microstructure and texture evolution of friction stir welded dissimilar aluminum alloys: AA2024 and AA6061. Journal of Manufacturing Processes, 32, 1–10.
- Tran, V.-X., Pan, J., & Pan, T. (2009). Effects of processing time on strengths and failure modes of dissimilar spot friction welds between aluminum 5754-O and 7075-T6 sheets. Journal of Materials Processing Technology, 209(8), 3724–3739.
- Hasan, M. M., Ishak, M., & Rejab, M. R. M. (2017). Effect of backing material and clamping system on the tensile strength of dissimilar AA7075-AA2024 friction stir welds. International Journal of Advanced Manufacturing Technology, 91, 3991–4007.
- Cole, E. G., Fehrenbacher, A., Duffie, N. A., Zinn, M. R., Pfefferkorn, F. E., & Ferrier, N. J. (2014). Weld temperature effects during friction stir welding of dissimilar aluminum alloys 6061-T6 and 7075-T6. International Journal of Advanced Manufacturing Technology, 71, 643–652.
- 23.Rodriguez, R. I., Jordon, J. B., Allison, P. G., Rushing, T., & Garcia, L. (2015). Microstructure and mechanical properties of dissimilar friction stir welding of 6061-to-7050 aluminum alloys. Materials and Design, 83, 60–65.
- 24. Bijanrostami, K., Barenji, R. V., & Hashemipour, M. (2017). Effect of traverse and rotational speeds on the tensile behavior of the underwater dissimilar friction stir welded aluminum alloys. Journal of Materials Engineering and Performance, 26, 909–920.
- 25. Giraud, L., Robe, H., Claudin, C., Desrayaud, C., Bocher, P., & Feulvarch, E. (2016). Investigation into the dissimilar friction stir welding of AA7020-T651 and AA6060-T6. Journal of Materials Processing Technology, 235, 220–230.
- 26. Aval, H. J. (2015). Influences of pin profile on the mechanical and microstructural behaviors in dissimilar friction stir welded AA6082-AA7075 butt joint. Materials and Design, 67, 413–421.[27] Selvaraj, S. K., Nagarajan, M. K., & Kumaraswamidhas, L. A. (2017). An investigation of abrasive and erosion behaviour of AA 2618 reinforced with Si3N4, AlN, and ZrB2 in situ composites by using optimization techniques. Archives of Civil and Mechanical Engineering, 17, 43–54.
- 28.Kumar, N. M., Kumaran, S. S., & Kumaraswamidhas, L. A. (2016). Wear behaviour of Al 2618 alloy reinforced with Si3N4, AlN, and ZrB2 in situ composites at elevated temperatures. Alexandria Engineering Journal, 55(1), 19–36.
- 29.Kumar, N. M., Kumaran, S. S., & Kumaraswamidhas, L. A. (2016). High temperature investigation on EDM process of Al 2618 alloy reinforced with Si3N4, AlN, and ZrB2 in-situ composites. Journal of Alloys and Compounds, 663, 755–768.
- 30. Kaygusuz, E., Karaomerlioglu, F., & Akinci, S. (2023). A review of friction stir welding parameters, process, and application fields. Turkish Journal of Engineering, 7(4), 286–295. https://doi.org/10.31127/tuje.1107210
- 31. Kahraman, F., & Sugözü, B. (2019). An integrated approach based on the Taguchi method and response surface methodology to optimize parameter design of asbestos-free brake pad material. Turkish Journal of Engineering, 3(3), 127–132. https://doi.org/10.31127/tuje.479458
- 32. Buldum, B. B., & Cagan, S. C. (2017). The optimization of surface roughness of AZ91D magnesium alloy using ANOVA in ball burnishing process. Turkish Journal of Engineering, 1(1), 25–31. https://doi.org/10.31127/tuje.316860
A Comprehensive Study of Microstructure and Mechanical Properties in Friction Stir Welded AA 2024 and Nano particle Reinforced Hybrid Composites
Year 2025,
Volume: 9 Issue: 2, 313 - 322
N Mathan Kumar
,
Suresh Kumar Ramalingam
,
Kundan Bharti
,
P V Nandhakumar
,
M Yuvaperiyasamy
Abstract
The hybrid metal matrix composites have been composed of the AA 2024 matrix, the Silicon Nitride (Si3N4), and Aluminium Nitride (AlN) particle reinforcements through stir casting route with various combinations such as 0,2,4,6 & 8 wt%. The hybrid composites were successfully welded by the friction welding process with the various input parameters. The input parameters are Tool Rotational Speed (RPM), welding speed (mm/min), and Axial force (L). In this investigation, the L25 orthogonal array was used to conduct experiments, and the mechanical and metallurgical investigations are taken. Finally, the reinforcement particles were distributed evenly in the matrix. After successful welding 8wt% reinforced sample achieved higher mechanical properties as well and the heat-affected zone and weldment area were investigated and found that the weld strength improved.
References
- Prater, T. (2014). Friction stir welding of metal matrix composites for use in aerospace structures. Acta Astronautica, 93, 366–373.
- Kumar, N. M., & Kumaraswamidhas, L. A. (2019). Characterization and tribological analysis on AA 6061 reinforced with AlN and ZrB2 in situ composites. Journal of Materials Research and Technology, 8(1), 969–980.
- Chawla, K. K., & Chawla, K. K. (1998). Metal matrix composites. Springer.
- Suresh, S. (2013). Fundamentals of metal-matrix composites. Elsevier.
- Das, H., Mondal, M., Hong, S.-T., Chun, D.-M., & Han, H. N. (2018). Joining and fabrication of metal matrix composites by friction stir welding/processing. International Journal of Precision Engineering and Manufacturing Technology, 5, 151–172.
- García, R., López, V. H., Kennedy, A. R., & Arias, G. (2007). Welding of Al-359/20% SiCp metal matrix composites by the novel MIG process with indirect electric arc (IEA). Journal of Materials Science, 42, 7794–7800.
- Reynolds, A. P. (2000). Visualisation of material flow in autogenous friction stir welds. Science and Technology of Welding and Joining, 5(2), 120–124.
- Threadgill, P. L., Leonard, A. J., Shercliff, H. R., & Withers, P. J. (2009). Friction stir welding of aluminium alloys. International Materials Reviews, 54(2), 49–93.
- Çam, G., & Mistikoglu, S. (2014). Recent developments in friction stir welding of Al-alloys. Journal of Materials Engineering and Performance, 23, 1936–1953.
- Guo, J. F., Chen, H. C., Sun, C. N., Bi, G., Sun, Z., & Wei, J. (2014). Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys: Effects of process parameters. Materials and Design, 56, 185–192.
- Chen, Y., Ding, H., Cai, Z., Zhao, J., & Li, J. (2017). Microstructural and mechanical characterization of a dissimilar friction stir-welded AA5083-AA7B04 butt joint. Journal of Materials Engineering and Performance, 26, 530–539.
- Steuwer, A., Peel, M. J., & Withers, P. J. (2006). Dissimilar friction stir welds in AA5083--AA6082: The effect of process parameters on residual stress. Materials Science and Engineering A, 441(1–2), 187–196.
- Peel, M. J., Steuwer, A., Withers, P. J., Dickerson, T., Shi, Q., & Shercliff, H. (2006). Dissimilar friction stir welds in AA5083-AA6082. Part I: Process parameter effects on thermal history and weld properties. Metallurgical and Materials Transactions A, 37, 2183–2193.
- Cavaliere, P., De Santis, A., Panella, F., & Squillace, A. (2009). Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082-AA2024 joints produced by friction stir welding. Materials and Design, 30(3), 609–616.
- Jonckheere, C., De Meester, B., Denquin, A., & Simar, A. (2013). Torque, temperature, and hardening precipitation evolution in dissimilar friction stir welds between 6061-T6 and 2014-T6 aluminum alloys. Journal of Materials Processing Technology, 213(6), 826–837.
- Tan, Y. B., et al. (2017). A study on microstructure and mechanical properties of AA 3003 aluminum alloy joints by underwater friction stir welding. Materials Characterization, 127, 41–52.
- Mehta, K. P., Carlone, P., Astarita, A., Scherillo, F., Rubino, F., & Vora, P. (2019). Conventional and cooling assisted friction stir welding of AA6061 and AZ31B alloys. Materials Science and Engineering A, 759, 252–261.
- Wang, Q., Zhao, Z., Zhao, Y., Yan, K., & Zhang, H. (2015). The adjustment strategy of welding parameters for spray-formed 7055 aluminum alloy underwater friction stir welding joint. Materials and Design, 88, 1366–1376.
- 19.Moradi, M. M., Aval, H. J., Jamaati, R., Amirkhanlou, S., & Ji, S. (2018). Microstructure and texture evolution of friction stir welded dissimilar aluminum alloys: AA2024 and AA6061. Journal of Manufacturing Processes, 32, 1–10.
- Tran, V.-X., Pan, J., & Pan, T. (2009). Effects of processing time on strengths and failure modes of dissimilar spot friction welds between aluminum 5754-O and 7075-T6 sheets. Journal of Materials Processing Technology, 209(8), 3724–3739.
- Hasan, M. M., Ishak, M., & Rejab, M. R. M. (2017). Effect of backing material and clamping system on the tensile strength of dissimilar AA7075-AA2024 friction stir welds. International Journal of Advanced Manufacturing Technology, 91, 3991–4007.
- Cole, E. G., Fehrenbacher, A., Duffie, N. A., Zinn, M. R., Pfefferkorn, F. E., & Ferrier, N. J. (2014). Weld temperature effects during friction stir welding of dissimilar aluminum alloys 6061-T6 and 7075-T6. International Journal of Advanced Manufacturing Technology, 71, 643–652.
- 23.Rodriguez, R. I., Jordon, J. B., Allison, P. G., Rushing, T., & Garcia, L. (2015). Microstructure and mechanical properties of dissimilar friction stir welding of 6061-to-7050 aluminum alloys. Materials and Design, 83, 60–65.
- 24. Bijanrostami, K., Barenji, R. V., & Hashemipour, M. (2017). Effect of traverse and rotational speeds on the tensile behavior of the underwater dissimilar friction stir welded aluminum alloys. Journal of Materials Engineering and Performance, 26, 909–920.
- 25. Giraud, L., Robe, H., Claudin, C., Desrayaud, C., Bocher, P., & Feulvarch, E. (2016). Investigation into the dissimilar friction stir welding of AA7020-T651 and AA6060-T6. Journal of Materials Processing Technology, 235, 220–230.
- 26. Aval, H. J. (2015). Influences of pin profile on the mechanical and microstructural behaviors in dissimilar friction stir welded AA6082-AA7075 butt joint. Materials and Design, 67, 413–421.[27] Selvaraj, S. K., Nagarajan, M. K., & Kumaraswamidhas, L. A. (2017). An investigation of abrasive and erosion behaviour of AA 2618 reinforced with Si3N4, AlN, and ZrB2 in situ composites by using optimization techniques. Archives of Civil and Mechanical Engineering, 17, 43–54.
- 28.Kumar, N. M., Kumaran, S. S., & Kumaraswamidhas, L. A. (2016). Wear behaviour of Al 2618 alloy reinforced with Si3N4, AlN, and ZrB2 in situ composites at elevated temperatures. Alexandria Engineering Journal, 55(1), 19–36.
- 29.Kumar, N. M., Kumaran, S. S., & Kumaraswamidhas, L. A. (2016). High temperature investigation on EDM process of Al 2618 alloy reinforced with Si3N4, AlN, and ZrB2 in-situ composites. Journal of Alloys and Compounds, 663, 755–768.
- 30. Kaygusuz, E., Karaomerlioglu, F., & Akinci, S. (2023). A review of friction stir welding parameters, process, and application fields. Turkish Journal of Engineering, 7(4), 286–295. https://doi.org/10.31127/tuje.1107210
- 31. Kahraman, F., & Sugözü, B. (2019). An integrated approach based on the Taguchi method and response surface methodology to optimize parameter design of asbestos-free brake pad material. Turkish Journal of Engineering, 3(3), 127–132. https://doi.org/10.31127/tuje.479458
- 32. Buldum, B. B., & Cagan, S. C. (2017). The optimization of surface roughness of AZ91D magnesium alloy using ANOVA in ball burnishing process. Turkish Journal of Engineering, 1(1), 25–31. https://doi.org/10.31127/tuje.316860