Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 3, 460 - 470
https://doi.org/10.31127/tuje.1554884

Abstract

References

  • Rajpoot, L., Tagade, A., Deshpande, G., Verma, K., Geed, S. R., Patle, D. S., & Sawarkar, A. N. (2022). An overview of pyrolysis of de-oiled cakes for the production of biochar, bio-oil, and pyro-gas: Current status, challenges, and future perspective. Bioresource Technology Reports, 19, 101205. https://doi.org/10.1016/j.biteb.2022.101205
  • Singh, D., Yadav, S., Bharadwaj, N., & Verma, R. (2020). Low temperature steam gasification to produce hydrogen rich gas from kitchen food waste: Influence of steam flow rate and temperature. International Journal of Hydrogen Energy, 45(41), 20843–20850. https://doi.org/10.1016/j.ijhydene.2020.05.168
  • Hajderi, A., Bozo, L., & Basholli, F. (2024). The impact of alternative fuel on diesel in reducing of pollution from vehicles. Advanced Engineering Science, 4, 15–24. http://publish.mersin.edu.tr/index.php/ades
  • Camaj, A., Haziri, A., Nuro, A., & Ibrahimi, A. C. (2024). Levels of BTEX and Chlorobenzenes in water samples of White Drin River, Kosovo. Advanced Engineering Science, 4, 45–53. http://publish.mersin.edu.tr/index.php/ades
  • Kalay, E., Sarıoğlu, H., & Özkul, İ. (2021). Design parameters of sand filtration systems in wastewater treatment process. Advanced Engineering Science, 1, 34–42. http://publish.mersin.edu.tr/index.php/ades
  • Papa, G., Cucina, M., Echchouki, K., De Nisi, P., & Adani, F. (2023). Anaerobic digestion of organic waste allows recovering energy and enhancing the subsequent bioplastic degradation in soil. Resources, Conservation and Recycling, 188, 106694. https://doi.org/10.1016/j.resconrec.2022.106694
  • Sánchez-Muñoz, S., Barbosa, F. G., Jiménez-Ascencio, J., Mier-Alba, E., Singh, A. K., dos Santos, J. C., Balagurusamy, N., da Silva, S. S., & Chandel, A. K. (2020). Technological Routes for Biogas Production: Current Status and Future Perspectives. In Biogas Production (pp. 3–17). Springer International Publishing. https://doi.org/10.1007/978-3-030-58827-4_1
  • Uddin, M. M., & Wright, M. M. (2023). Anaerobic digestion fundamentals, challenges, and technological advances. Physical Sciences Reviews, 8(9), 2819–2837. https://doi.org/10.1515/psr-2021-0068
  • Jegede, A. O., Zeeman, G., & Bruning, H. (2019). A review of mixing, design and loading conditions in household anaerobic digesters. Critical Reviews in Environmental Science and Technology, 49(22), 2117–2153. https://doi.org/10.1080/10643389.2019.1607441
  • Singh, B., Szamosi, Z., & Siménfalvi, Z. (2019). State of the art on mixing in an anaerobic digester: A review. Renewable Energy, 141, 922–936. https://doi.org/10.1016/j.renene.2019.04.072
  • Sun, J., Zhang, L., & Loh, K.-C. (2021). Review and perspectives of enhanced volatile fatty acids production from acidogenic fermentation of lignocellulosic biomass wastes. Bioresources and Bioprocessing, 8(1), 68. https://doi.org/10.1186/s40643-021-00420-3
  • Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285. https://doi.org/10.1016/j.envres.2021.112285
  • Chandra, R., Vijay, V. K., Subbarao, P. M. V., & Khura, T. K. (2012). Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Applied Energy, 93, 148–159. https://doi.org/10.1016/j.apenergy.2010.10.049
  • Deshmukh, M., Pande, A., & Marathe, A. (2022). Different particle size study of castor deoiled cake for biofuel production with an environmental sustainability perspective. Heliyon, 8(6), e09710. https://doi.org/10.1016/j.heliyon.2022.e09710
  • Mohanakrishna, G., Sneha, N. P., Rafi, S. M., & Sarkar, O. (2023). Dark fermentative hydrogen production: Potential of food waste as future energy needs. Science of The Total Environment, 888, 163801. https://doi.org/10.1016/j.scitotenv.2023.163801
  • Sadukha, S., Thomas, R. M., Anand, K. G. V., Bhaliya, T., Nayak, J., Singhal, K., Ghosh, A., & Dineshkumar, R. (2024). Strategic Agro-Waste Valorization for Sustainable Production of Bioactives and Biofuel by Marine Microalgae. Waste and Biomass Valorization, 15(10), 5741–5753. https://doi.org/10.1007/s12649-023-02362-7
  • Alsharidi, A. K., Khan, A. A., Shepherd, J. J., & Stacey, A. J. (2020). Multiscaling analysis of a slowly varying anaerobic digestion model. Mathematical Methods in the Applied Sciences, 43(9), 5729–5743. https://doi.org/10.1002/mma.6315
  • Egerland Bueno, B., Rosero Henao, J. C., Rabelo, S. C., Gomes, T. M., Ribeiro, R., & Tommaso, G. (2021). Methane production from anaerobic digestion of dairy grease trap waste: Effect of sugarcane bagasse addition. Environmental Quality Management, 31(1), 73–83. https://doi.org/10.1002/tqem.21740
  • Chen, H., Hung, J., Hsu, K., Chuang, P., & Chen, C. (2021). Effects of operating conditions on biogas production in an anaerobic digestion system of the food and beverage industry. Journal of the Science of Food and Agriculture, 101(7), 2974–2983. https://doi.org/10.1002/jsfa.10930
  • Xing, T., Wang, Z., Zhen, F., Liu, H., Wang, F., Zhang, Y., Kong, X., & Sun, Y. (2022). Methane production of rare earth element‐rich Dicranopteris dichotoma and effects of La( III ) on anaerobic digestion performance of lignocellulose. Journal of Chemical Technology & Biotechnology, 97(8), 1987–1994. https://doi.org/10.1002/jctb.7068
  • Deepanraj, B., Senthilkumar, N., & Ranjitha, J. (2021). Effect of solid concentration on biogas production through anaerobic digestion of rapeseed oil cake. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(11), 1329–1336. https://doi.org/10.1080/15567036.2019.1636902
  • Sharma, A. K., Sahoo, P. K., Mukherjee, M., & Patel, A. (2022). Assessment of Sustainable Biogas Production from Co-Digestion of Jatropha De-Oiled Cake and Cattle Dung Using Floating Drum Type Digester under Psychrophilic and Mesophilic Conditions. Clean Technologies, 4(2), 529–541. https://doi.org/10.3390/cleantechnol4020032
  • Havilah, P. R., Sharma, P. K., & Sharma, A. K. (2021). Characterization, thermal and kinetic analysis of Pinusroxburghii. Environment, Development and Sustainability, 23(6), 8872–8894. https://doi.org/10.1007/s10668-020-01001-8
  • Agrawalla, A., Kumar, S., & Singh, R. K. (2011). Pyrolysis of groundnut de-oiled cake and characterization of the liquid product. Bioresource Technology, 102(22), 10711–10716. https://doi.org/10.1016/j.biortech.2011.08.113
  • Mulimani, H. V, & Navindgi, M. C. (2016). Analysis of physiochemical properties of de-oiled Mahua seed cake for their suitability in producing bio-oil. International Journal of Innovative Research in Science, Engineering and Technology, 5(4).
  • Ucar, S., & Ozkan, A. R. (2008). Characterization of products from the pyrolysis of rapeseed oil cake. Bioresource Technology, 99(18), 8771–8776.
  • Ankit Agrawalla, A. A., Sachin Kumar, S. K., & Singh, R. K. (2011). Pyrolysis of groundnut de-oiled cake and characterization of the liquid product.
  • Roychoudhury, R. (2016). Neem products. In Ecofriendly pest management for food security (pp. 545–562). Elsevier.
  • Wang, Y., Zhao, Y., & Hu, C. (2024). Slow Pyrolysis of De-Oiled Rapeseed Cake: Influence of Pyrolysis Parameters on the Yield and Characteristics of the Liquid Obtained. Energies, 17(3), 612.
  • Jeppu, G. P., Janardhan, J., Kaup, S., Janardhanan, A., Mohammed, S., & Acharya, S. (2022). Effect of feed slurry dilution and total solids on specific biogas production by anaerobic digestion in batch and semi-batch reactors. Journal of Material Cycles and Waste Management, 1–14.
  • Paolini, V., Petracchini, F., Segreto, M., Tomassetti, L., Naja, N., & Cecinato, A. (2018). Environmental impact of biogas: A short review of current knowledge. Journal of Environmental Science and Health, Part A, 53(10), 899–906.
  • Ourradi, H., Lahboubi, N., Habchi, S., Hanine, H., & others. (2022). Methane production from date seed cake (Phoenix dactylifera L.) using mesophilic fed-batch anaerobic digestion. Cleaner Waste Systems, 2, 100009.
  • Laiq Ur Rehman, M., Iqbal, A., Chang, C.-C., Li, W., & Ju, M. (2019). Anaerobic digestion. Water Environment Research, 91(10), 1253–1271.
  • Volli, V., & Singh, R. K. (2012). Production of bio-oil from de-oiled cakes by thermal pyrolysis. Fuel, 96, 579–585. https://doi.org/10.1016/j.fuel.2012.01.016
  • Deepanraj, B., Sivasubramanian, V., & Jayaraj, S. (2015). Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor. Ecotoxicology and Environmental Safety, 121, 100–104.
  • Pan, I., Dam, B., & Sen, S. K. (2012). Composting of common organic wastes using microbial inoculants. 3 Biotech, 2, 127–134.
  • Basholli, F., Mema, B., & Basholli, A. (2024). Training of information technology personnel through simulations for protection against cyber attacks. Engineering Applications, 2024(1), 45–58. https://publish.mersin.edu.tr/index.php/enap
  • Inayat, A., Ahmed, S. F., Djavanroodi, F., Al-Ali, F., Alsallani, M., & Mangoosh, S. (2021). Process simulation and optimization of anaerobic Co-digestion. Frontiers in Energy Research, 9, 764463.
  • Rajendran, K., Kankanala, H. R., Lundin, M., & Taherzadeh, M. J. (2014). A novel process simulation model (PSM) for anaerobic digestion using Aspen Plus. Bioresource Technology, 168, 7–13.
  • Harun, N., Othman, N. A., Zaki, N. A., Rasul, N. A. M., Samah, R. A., & Hashim, H. (2019). Simulation of anaerobic digestion for biogas production from food waste using SuperPro designer. Materials Today: Proceedings, 19, 1315–1320.
  • Carlini, M., Castellucci, S., Mennuni, A., & Selli, S. (2020). Simulation of anaerobic digestion processes: Validation of a novel software tool ADM1-based with AQUASIM. Energy Reports, 6, 102–115.
  • Bułkowska, K., Białobrzewski, I., Gusiatin, Z. M., Klimiuk, E., & Pokój, T. (2015). ADM1-based modeling of anaerobic codigestion of maize silage and cattle manure--calibration of parameters and model verification (part II)/Modelowanie kofermentacji kiszonki kukurydzy i obornika bydl{\k{e}}cego za pomoc{\k{a}} ADM1--kalibracja i weryfikac. Archives of Environmental Protection.
  • Vineyard, D., Karthikeyan, K. G., Davidson, C., & Barak, P. (2023). Modeling an acid-phase digester in BioWin with parameter optimization from site data. Journal of Water Process Engineering, 54, 103971.
  • D’Bastiani, C., Kennedy, D., & Reynolds, A. (2023). CFD simulation of anaerobic granular sludge reactors: A review. Water Research, 242, 120220.
  • Abbas, A. M. H., Hamza, A. M., Al-Shabasi, Badawi, A. M., Al-Saadawi, & Ali, M. M. (2019). Modeling and Simulation of a Small-Scale Kitchen Waste Biodigester. Journal of Environmental Sciences, 48(2), 37–66.
  • Juraev, D. A. (2023). Fundamental solution for the Helmholtz equation. Engineering Applications, 2023(2), 164–175. https://publish.mersin.edu.tr/index.php/enap
  • Juraev, D. A., Shokri, A., Agarwal, P., Elsayed, E. E., & Nurhidayat, I. (2023). Approximate solutions of the Helmholtz equation on the plane. Engineering Applications, 2023(3), 291–303. https://publish.mersin.edu.tr/index.php/enap
  • Paramaguru, G., Kannan, M., Senthilkumar, N., & Lawrence, P. (2017). Effect of temperature on biogas production from food waste through anaerobic digestion. Desalin. Water Treat, 85, 68–72.
  • Parsa, Z., Dhib, R., & Mehrvar, M. (2024). Dynamic Modelling, Process Control, and Monitoring of Selected Biological and Advanced Oxidation Processes for Wastewater Treatment: A Review of Recent Developments. Bioengineering, 11(2), 189.
  • Mauky, E., Weinrich, S., Jacobi, H.-F., Nägele, H.-J., Liebetrau, J., & Nelles, M. (2017). Demand-driven biogas production by flexible feeding in full-scale--Process stability and flexibility potentials. Anaerobe, 46, 86–95.
  • Musa, M. A., & Idrus, S. (2020). Effect of hydraulic retention time on the treatment of real cattle slaughterhouse wastewater and biogas production from HUASB reactor. Water, 12(2), 490.
  • Arhoun, B., Villen-Guzman, M., El Mail, R., & Gomez-Lahoz, C. (2021). Anaerobic codigestion with fruit and vegetable wastes: An opportunity to enhance the sustainability and circular economy of the WWTP digesters. In Clean Energy and Resources Recovery (pp. 103–132). Elsevier.
  • Baâti, S., Benyoucef, F., Makan, A., El Bouadili, A., & El Ghmari, A. (2018). Influence of hydraulic retention time on biogas production during leachate treatment. Environmental Engineering Research, 23(3), 288–293.
  • Feng, D., Xia, A., Huang, Y., Zhu, X., Zhu, X., Show, P.-L., & Liao, Q. (2023). Continuous electromethanogenesis of propionate wastewater: Effect of external voltage and hydraulic retention time. Chemical Engineering Journal, 454, 140267.
  • S, N., & Perumal, M. (2024). Synergistic Valorisation of Fruit and Vegetable Waste for Bioenergy Production: A Review. International Research Journal of Multidisciplinary Technovation, 61–79. https://doi.org/10.54392/irjmt2455
  • Deepanraj, B., Senthilkumar, N., Ranjitha, J., Jayaraj, S., & Ong, H. C. (2021). Biogas from food waste through anaerobic digestion: optimization with response surface methodology. Biomass Conversion and Biorefinery, 11, 227–239.
  • Koo, T., Yulisa, A., & Hwang, S. (2019). Microbial community structure in full scale anaerobic mono-and co-digesters treating food waste and animal waste. Bioresource Technology, 282, 439–446.
  • Mir, M. A., Hussain, A., & Verma, C. (2016). Design considerations and operational performance of anaerobic digester: A review. Cogent Engineering, 3(1), 1181696.
  • Widyarani, Victor, Y., Sriwuryandari, L., Priantoro, E. A., Sembiring, T., & Sintawardani, N. (2018). Influence of pH on biogas production in a batch anaerobic process of tofu wastewater. IOP Conference Series: Earth and Environmental Science, 160, 12014.
  • Yan, X., Deng, P., Ding, T., Zhang, Z., Li, X., & Wu, Z. (2023). Effect of temperature on anaerobic fermentation of poplar ethanol wastewater: performance and microbial communities. ACS Omega, 8(6), 5486–5496.
  • Kaur, G., Luo, L., Chen, G., & Wong, J. W. C. (2019). Integrated food waste and sewage treatment--A better approach than conventional food waste-sludge co-digestion for higher energy recovery via anaerobic digestion. Bioresource Technology, 289, 121698.
  • Meegoda, J. N., Li, B., Patel, K., & Wang, L. B. (2018). A review of the processes, parameters, and optimization of anaerobic digestion. International Journal of Environmental Research and Public Health, 15(10), 2224.
  • Tan, V. W. G., Chan, Y. J., Arumugasamy, S. K., & Lim, J. W. (2023). Optimizing biogas production from palm oil mill effluent utilizing integrated machine learning and response surface methodology framework. Journal of Cleaner Production, 414, 137575.
  • Amin, S. F. (2023). Potential medicinal properties of black cumin (Nigella sativa) in traditional medicine. In Biochemistry, Nutrition, and Therapeutics of Black Cumin Seed (pp. 237–245). Elsevier. https://doi.org/10.1016/b978-0-323-90788-0.00014-7
  • Bayrakdar, A. (2020). Anaerobic co-digestion of tannery solid waste: Optimum leather fleshing waste loading. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(6), 1133–1137.
  • Haffiez, N., Zakaria, B. S., Azizi, S. M. M., & Dhar, B. (2022). Fate of Intracellular, Extracellular Polymeric Substances-Associated, and Cell-Free Antibiotic Resistance Genes in Anaerobic Digestion of Thermally Hydrolyzed Sludge. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4177770
  • Wei, Y., Yuan, H., Wachemo, A. C., & Li, X. (2020). Anaerobic co-digestion of cattle manure and liquid fraction of digestate (LFD) pretreated corn stover: Pretreatment process optimization and evolution of microbial community structure. Bioresource Technology, 296, 122282. https://doi.org/10.1016/j.biortech.2019.122282
  • Gnaoui, Y. El, Karouach, F., Bakraoui, M., Barz, M., & Bari, H. El. (2020). Mesophilic anaerobic digestion of food waste: Effect of thermal pretreatment on improvement of anaerobic digestion process. Energy Reports, 6, 417–422. https://doi.org/10.1016/j.egyr.2019.11.096
  • Senthilkumar, N., Deepanraj, B., Vasantharaj, K., & Sivasubramanian, V. (2016). Optimization and performance analysis of process parameters during anaerobic digestion of food waste using hybrid GRA-PCA technique. Journal of Renewable and Sustainable Energy, 8(6).
  • Manyi-Loh, C. E., & Lues, R. (2023). Anaerobic Digestion of Lignocellulosic Biomass: Substrate Characteristics (Challenge) and Innovation. Fermentation, 9(8), 755.
  • Ça\ugatay, M., & Karacan, S. (2022). Multivariable generalized predictive control of reactive distillation column process for biodiesel production. Turkish Journal of Engineering, 6(1), 40–53.
  • Güngör, A. (2023). The effect of Cumin Black (Nigella Sativa L.) as bio-based filler on chemical, rheological and mechanical properties of epdm composites. Turkish Journal of Engineering, 7(4), 279–285. https://doi.org/10.31127/tuje.1180753
  • Savc\i, S. (2017). Treatment of biodiesel wastewater using yellow mustard seeds. Turkish Journal of Engineering, 1(1), 11–17.

Experimental Investigation and Numerical Modelling of Anaerobic Digestion Process Using De-Oiled Cakes

Year 2025, Volume: 9 Issue: 3, 460 - 470
https://doi.org/10.31127/tuje.1554884

Abstract

Energy crises emerging due to the depletion of fossil fuels and the management of solid wastes of all categories are the problems that should be addressed in the present scenario. This is done by converting these solid waste materials into valuable energy, reducing fossil fuel dependency. The conversion of solid wastes into valuable biogas is performed through the anaerobic digestion (AD) process. In this work, the solid wastes considered were de-oiled cake (DOC), such as rapeseed cake (RC), neem cake (NC) and ground cake (GC), obtained after removing the oil from the seeds. The anaerobic digestion process is simulated using the Simulink tool of MATLAB. Comparison of biogas produced, digest pH value, and temperature inside the digester were done. Experimentation is also performed with a floating drum digester of a 300-litre gas-holding floating dome made of fibre material. The obtained results are compared with the simulation results, and it is found that the experimental values coincide with the simulation results. The maximum biogas production was obtained experimentally with RC (1.366 litres), followed by NC (0.992 litres) and GC (0.938 litres). The difference among the experimental and simulation results for biogas production is 7.04% for NC, 6.39% for GC and 2.51% for RC. The average pH and temperature maintained inside the digestor for RC is 7.06 and 48.35°C, 7.02 47.46°C for GC, and 7.05 and 46°C for NC. The chemical oxygen demand (COD) is higher for RC (93767.69 mg/L), with a 0.42% variation from the simulation result.

References

  • Rajpoot, L., Tagade, A., Deshpande, G., Verma, K., Geed, S. R., Patle, D. S., & Sawarkar, A. N. (2022). An overview of pyrolysis of de-oiled cakes for the production of biochar, bio-oil, and pyro-gas: Current status, challenges, and future perspective. Bioresource Technology Reports, 19, 101205. https://doi.org/10.1016/j.biteb.2022.101205
  • Singh, D., Yadav, S., Bharadwaj, N., & Verma, R. (2020). Low temperature steam gasification to produce hydrogen rich gas from kitchen food waste: Influence of steam flow rate and temperature. International Journal of Hydrogen Energy, 45(41), 20843–20850. https://doi.org/10.1016/j.ijhydene.2020.05.168
  • Hajderi, A., Bozo, L., & Basholli, F. (2024). The impact of alternative fuel on diesel in reducing of pollution from vehicles. Advanced Engineering Science, 4, 15–24. http://publish.mersin.edu.tr/index.php/ades
  • Camaj, A., Haziri, A., Nuro, A., & Ibrahimi, A. C. (2024). Levels of BTEX and Chlorobenzenes in water samples of White Drin River, Kosovo. Advanced Engineering Science, 4, 45–53. http://publish.mersin.edu.tr/index.php/ades
  • Kalay, E., Sarıoğlu, H., & Özkul, İ. (2021). Design parameters of sand filtration systems in wastewater treatment process. Advanced Engineering Science, 1, 34–42. http://publish.mersin.edu.tr/index.php/ades
  • Papa, G., Cucina, M., Echchouki, K., De Nisi, P., & Adani, F. (2023). Anaerobic digestion of organic waste allows recovering energy and enhancing the subsequent bioplastic degradation in soil. Resources, Conservation and Recycling, 188, 106694. https://doi.org/10.1016/j.resconrec.2022.106694
  • Sánchez-Muñoz, S., Barbosa, F. G., Jiménez-Ascencio, J., Mier-Alba, E., Singh, A. K., dos Santos, J. C., Balagurusamy, N., da Silva, S. S., & Chandel, A. K. (2020). Technological Routes for Biogas Production: Current Status and Future Perspectives. In Biogas Production (pp. 3–17). Springer International Publishing. https://doi.org/10.1007/978-3-030-58827-4_1
  • Uddin, M. M., & Wright, M. M. (2023). Anaerobic digestion fundamentals, challenges, and technological advances. Physical Sciences Reviews, 8(9), 2819–2837. https://doi.org/10.1515/psr-2021-0068
  • Jegede, A. O., Zeeman, G., & Bruning, H. (2019). A review of mixing, design and loading conditions in household anaerobic digesters. Critical Reviews in Environmental Science and Technology, 49(22), 2117–2153. https://doi.org/10.1080/10643389.2019.1607441
  • Singh, B., Szamosi, Z., & Siménfalvi, Z. (2019). State of the art on mixing in an anaerobic digester: A review. Renewable Energy, 141, 922–936. https://doi.org/10.1016/j.renene.2019.04.072
  • Sun, J., Zhang, L., & Loh, K.-C. (2021). Review and perspectives of enhanced volatile fatty acids production from acidogenic fermentation of lignocellulosic biomass wastes. Bioresources and Bioprocessing, 8(1), 68. https://doi.org/10.1186/s40643-021-00420-3
  • Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285. https://doi.org/10.1016/j.envres.2021.112285
  • Chandra, R., Vijay, V. K., Subbarao, P. M. V., & Khura, T. K. (2012). Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Applied Energy, 93, 148–159. https://doi.org/10.1016/j.apenergy.2010.10.049
  • Deshmukh, M., Pande, A., & Marathe, A. (2022). Different particle size study of castor deoiled cake for biofuel production with an environmental sustainability perspective. Heliyon, 8(6), e09710. https://doi.org/10.1016/j.heliyon.2022.e09710
  • Mohanakrishna, G., Sneha, N. P., Rafi, S. M., & Sarkar, O. (2023). Dark fermentative hydrogen production: Potential of food waste as future energy needs. Science of The Total Environment, 888, 163801. https://doi.org/10.1016/j.scitotenv.2023.163801
  • Sadukha, S., Thomas, R. M., Anand, K. G. V., Bhaliya, T., Nayak, J., Singhal, K., Ghosh, A., & Dineshkumar, R. (2024). Strategic Agro-Waste Valorization for Sustainable Production of Bioactives and Biofuel by Marine Microalgae. Waste and Biomass Valorization, 15(10), 5741–5753. https://doi.org/10.1007/s12649-023-02362-7
  • Alsharidi, A. K., Khan, A. A., Shepherd, J. J., & Stacey, A. J. (2020). Multiscaling analysis of a slowly varying anaerobic digestion model. Mathematical Methods in the Applied Sciences, 43(9), 5729–5743. https://doi.org/10.1002/mma.6315
  • Egerland Bueno, B., Rosero Henao, J. C., Rabelo, S. C., Gomes, T. M., Ribeiro, R., & Tommaso, G. (2021). Methane production from anaerobic digestion of dairy grease trap waste: Effect of sugarcane bagasse addition. Environmental Quality Management, 31(1), 73–83. https://doi.org/10.1002/tqem.21740
  • Chen, H., Hung, J., Hsu, K., Chuang, P., & Chen, C. (2021). Effects of operating conditions on biogas production in an anaerobic digestion system of the food and beverage industry. Journal of the Science of Food and Agriculture, 101(7), 2974–2983. https://doi.org/10.1002/jsfa.10930
  • Xing, T., Wang, Z., Zhen, F., Liu, H., Wang, F., Zhang, Y., Kong, X., & Sun, Y. (2022). Methane production of rare earth element‐rich Dicranopteris dichotoma and effects of La( III ) on anaerobic digestion performance of lignocellulose. Journal of Chemical Technology & Biotechnology, 97(8), 1987–1994. https://doi.org/10.1002/jctb.7068
  • Deepanraj, B., Senthilkumar, N., & Ranjitha, J. (2021). Effect of solid concentration on biogas production through anaerobic digestion of rapeseed oil cake. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(11), 1329–1336. https://doi.org/10.1080/15567036.2019.1636902
  • Sharma, A. K., Sahoo, P. K., Mukherjee, M., & Patel, A. (2022). Assessment of Sustainable Biogas Production from Co-Digestion of Jatropha De-Oiled Cake and Cattle Dung Using Floating Drum Type Digester under Psychrophilic and Mesophilic Conditions. Clean Technologies, 4(2), 529–541. https://doi.org/10.3390/cleantechnol4020032
  • Havilah, P. R., Sharma, P. K., & Sharma, A. K. (2021). Characterization, thermal and kinetic analysis of Pinusroxburghii. Environment, Development and Sustainability, 23(6), 8872–8894. https://doi.org/10.1007/s10668-020-01001-8
  • Agrawalla, A., Kumar, S., & Singh, R. K. (2011). Pyrolysis of groundnut de-oiled cake and characterization of the liquid product. Bioresource Technology, 102(22), 10711–10716. https://doi.org/10.1016/j.biortech.2011.08.113
  • Mulimani, H. V, & Navindgi, M. C. (2016). Analysis of physiochemical properties of de-oiled Mahua seed cake for their suitability in producing bio-oil. International Journal of Innovative Research in Science, Engineering and Technology, 5(4).
  • Ucar, S., & Ozkan, A. R. (2008). Characterization of products from the pyrolysis of rapeseed oil cake. Bioresource Technology, 99(18), 8771–8776.
  • Ankit Agrawalla, A. A., Sachin Kumar, S. K., & Singh, R. K. (2011). Pyrolysis of groundnut de-oiled cake and characterization of the liquid product.
  • Roychoudhury, R. (2016). Neem products. In Ecofriendly pest management for food security (pp. 545–562). Elsevier.
  • Wang, Y., Zhao, Y., & Hu, C. (2024). Slow Pyrolysis of De-Oiled Rapeseed Cake: Influence of Pyrolysis Parameters on the Yield and Characteristics of the Liquid Obtained. Energies, 17(3), 612.
  • Jeppu, G. P., Janardhan, J., Kaup, S., Janardhanan, A., Mohammed, S., & Acharya, S. (2022). Effect of feed slurry dilution and total solids on specific biogas production by anaerobic digestion in batch and semi-batch reactors. Journal of Material Cycles and Waste Management, 1–14.
  • Paolini, V., Petracchini, F., Segreto, M., Tomassetti, L., Naja, N., & Cecinato, A. (2018). Environmental impact of biogas: A short review of current knowledge. Journal of Environmental Science and Health, Part A, 53(10), 899–906.
  • Ourradi, H., Lahboubi, N., Habchi, S., Hanine, H., & others. (2022). Methane production from date seed cake (Phoenix dactylifera L.) using mesophilic fed-batch anaerobic digestion. Cleaner Waste Systems, 2, 100009.
  • Laiq Ur Rehman, M., Iqbal, A., Chang, C.-C., Li, W., & Ju, M. (2019). Anaerobic digestion. Water Environment Research, 91(10), 1253–1271.
  • Volli, V., & Singh, R. K. (2012). Production of bio-oil from de-oiled cakes by thermal pyrolysis. Fuel, 96, 579–585. https://doi.org/10.1016/j.fuel.2012.01.016
  • Deepanraj, B., Sivasubramanian, V., & Jayaraj, S. (2015). Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor. Ecotoxicology and Environmental Safety, 121, 100–104.
  • Pan, I., Dam, B., & Sen, S. K. (2012). Composting of common organic wastes using microbial inoculants. 3 Biotech, 2, 127–134.
  • Basholli, F., Mema, B., & Basholli, A. (2024). Training of information technology personnel through simulations for protection against cyber attacks. Engineering Applications, 2024(1), 45–58. https://publish.mersin.edu.tr/index.php/enap
  • Inayat, A., Ahmed, S. F., Djavanroodi, F., Al-Ali, F., Alsallani, M., & Mangoosh, S. (2021). Process simulation and optimization of anaerobic Co-digestion. Frontiers in Energy Research, 9, 764463.
  • Rajendran, K., Kankanala, H. R., Lundin, M., & Taherzadeh, M. J. (2014). A novel process simulation model (PSM) for anaerobic digestion using Aspen Plus. Bioresource Technology, 168, 7–13.
  • Harun, N., Othman, N. A., Zaki, N. A., Rasul, N. A. M., Samah, R. A., & Hashim, H. (2019). Simulation of anaerobic digestion for biogas production from food waste using SuperPro designer. Materials Today: Proceedings, 19, 1315–1320.
  • Carlini, M., Castellucci, S., Mennuni, A., & Selli, S. (2020). Simulation of anaerobic digestion processes: Validation of a novel software tool ADM1-based with AQUASIM. Energy Reports, 6, 102–115.
  • Bułkowska, K., Białobrzewski, I., Gusiatin, Z. M., Klimiuk, E., & Pokój, T. (2015). ADM1-based modeling of anaerobic codigestion of maize silage and cattle manure--calibration of parameters and model verification (part II)/Modelowanie kofermentacji kiszonki kukurydzy i obornika bydl{\k{e}}cego za pomoc{\k{a}} ADM1--kalibracja i weryfikac. Archives of Environmental Protection.
  • Vineyard, D., Karthikeyan, K. G., Davidson, C., & Barak, P. (2023). Modeling an acid-phase digester in BioWin with parameter optimization from site data. Journal of Water Process Engineering, 54, 103971.
  • D’Bastiani, C., Kennedy, D., & Reynolds, A. (2023). CFD simulation of anaerobic granular sludge reactors: A review. Water Research, 242, 120220.
  • Abbas, A. M. H., Hamza, A. M., Al-Shabasi, Badawi, A. M., Al-Saadawi, & Ali, M. M. (2019). Modeling and Simulation of a Small-Scale Kitchen Waste Biodigester. Journal of Environmental Sciences, 48(2), 37–66.
  • Juraev, D. A. (2023). Fundamental solution for the Helmholtz equation. Engineering Applications, 2023(2), 164–175. https://publish.mersin.edu.tr/index.php/enap
  • Juraev, D. A., Shokri, A., Agarwal, P., Elsayed, E. E., & Nurhidayat, I. (2023). Approximate solutions of the Helmholtz equation on the plane. Engineering Applications, 2023(3), 291–303. https://publish.mersin.edu.tr/index.php/enap
  • Paramaguru, G., Kannan, M., Senthilkumar, N., & Lawrence, P. (2017). Effect of temperature on biogas production from food waste through anaerobic digestion. Desalin. Water Treat, 85, 68–72.
  • Parsa, Z., Dhib, R., & Mehrvar, M. (2024). Dynamic Modelling, Process Control, and Monitoring of Selected Biological and Advanced Oxidation Processes for Wastewater Treatment: A Review of Recent Developments. Bioengineering, 11(2), 189.
  • Mauky, E., Weinrich, S., Jacobi, H.-F., Nägele, H.-J., Liebetrau, J., & Nelles, M. (2017). Demand-driven biogas production by flexible feeding in full-scale--Process stability and flexibility potentials. Anaerobe, 46, 86–95.
  • Musa, M. A., & Idrus, S. (2020). Effect of hydraulic retention time on the treatment of real cattle slaughterhouse wastewater and biogas production from HUASB reactor. Water, 12(2), 490.
  • Arhoun, B., Villen-Guzman, M., El Mail, R., & Gomez-Lahoz, C. (2021). Anaerobic codigestion with fruit and vegetable wastes: An opportunity to enhance the sustainability and circular economy of the WWTP digesters. In Clean Energy and Resources Recovery (pp. 103–132). Elsevier.
  • Baâti, S., Benyoucef, F., Makan, A., El Bouadili, A., & El Ghmari, A. (2018). Influence of hydraulic retention time on biogas production during leachate treatment. Environmental Engineering Research, 23(3), 288–293.
  • Feng, D., Xia, A., Huang, Y., Zhu, X., Zhu, X., Show, P.-L., & Liao, Q. (2023). Continuous electromethanogenesis of propionate wastewater: Effect of external voltage and hydraulic retention time. Chemical Engineering Journal, 454, 140267.
  • S, N., & Perumal, M. (2024). Synergistic Valorisation of Fruit and Vegetable Waste for Bioenergy Production: A Review. International Research Journal of Multidisciplinary Technovation, 61–79. https://doi.org/10.54392/irjmt2455
  • Deepanraj, B., Senthilkumar, N., Ranjitha, J., Jayaraj, S., & Ong, H. C. (2021). Biogas from food waste through anaerobic digestion: optimization with response surface methodology. Biomass Conversion and Biorefinery, 11, 227–239.
  • Koo, T., Yulisa, A., & Hwang, S. (2019). Microbial community structure in full scale anaerobic mono-and co-digesters treating food waste and animal waste. Bioresource Technology, 282, 439–446.
  • Mir, M. A., Hussain, A., & Verma, C. (2016). Design considerations and operational performance of anaerobic digester: A review. Cogent Engineering, 3(1), 1181696.
  • Widyarani, Victor, Y., Sriwuryandari, L., Priantoro, E. A., Sembiring, T., & Sintawardani, N. (2018). Influence of pH on biogas production in a batch anaerobic process of tofu wastewater. IOP Conference Series: Earth and Environmental Science, 160, 12014.
  • Yan, X., Deng, P., Ding, T., Zhang, Z., Li, X., & Wu, Z. (2023). Effect of temperature on anaerobic fermentation of poplar ethanol wastewater: performance and microbial communities. ACS Omega, 8(6), 5486–5496.
  • Kaur, G., Luo, L., Chen, G., & Wong, J. W. C. (2019). Integrated food waste and sewage treatment--A better approach than conventional food waste-sludge co-digestion for higher energy recovery via anaerobic digestion. Bioresource Technology, 289, 121698.
  • Meegoda, J. N., Li, B., Patel, K., & Wang, L. B. (2018). A review of the processes, parameters, and optimization of anaerobic digestion. International Journal of Environmental Research and Public Health, 15(10), 2224.
  • Tan, V. W. G., Chan, Y. J., Arumugasamy, S. K., & Lim, J. W. (2023). Optimizing biogas production from palm oil mill effluent utilizing integrated machine learning and response surface methodology framework. Journal of Cleaner Production, 414, 137575.
  • Amin, S. F. (2023). Potential medicinal properties of black cumin (Nigella sativa) in traditional medicine. In Biochemistry, Nutrition, and Therapeutics of Black Cumin Seed (pp. 237–245). Elsevier. https://doi.org/10.1016/b978-0-323-90788-0.00014-7
  • Bayrakdar, A. (2020). Anaerobic co-digestion of tannery solid waste: Optimum leather fleshing waste loading. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(6), 1133–1137.
  • Haffiez, N., Zakaria, B. S., Azizi, S. M. M., & Dhar, B. (2022). Fate of Intracellular, Extracellular Polymeric Substances-Associated, and Cell-Free Antibiotic Resistance Genes in Anaerobic Digestion of Thermally Hydrolyzed Sludge. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4177770
  • Wei, Y., Yuan, H., Wachemo, A. C., & Li, X. (2020). Anaerobic co-digestion of cattle manure and liquid fraction of digestate (LFD) pretreated corn stover: Pretreatment process optimization and evolution of microbial community structure. Bioresource Technology, 296, 122282. https://doi.org/10.1016/j.biortech.2019.122282
  • Gnaoui, Y. El, Karouach, F., Bakraoui, M., Barz, M., & Bari, H. El. (2020). Mesophilic anaerobic digestion of food waste: Effect of thermal pretreatment on improvement of anaerobic digestion process. Energy Reports, 6, 417–422. https://doi.org/10.1016/j.egyr.2019.11.096
  • Senthilkumar, N., Deepanraj, B., Vasantharaj, K., & Sivasubramanian, V. (2016). Optimization and performance analysis of process parameters during anaerobic digestion of food waste using hybrid GRA-PCA technique. Journal of Renewable and Sustainable Energy, 8(6).
  • Manyi-Loh, C. E., & Lues, R. (2023). Anaerobic Digestion of Lignocellulosic Biomass: Substrate Characteristics (Challenge) and Innovation. Fermentation, 9(8), 755.
  • Ça\ugatay, M., & Karacan, S. (2022). Multivariable generalized predictive control of reactive distillation column process for biodiesel production. Turkish Journal of Engineering, 6(1), 40–53.
  • Güngör, A. (2023). The effect of Cumin Black (Nigella Sativa L.) as bio-based filler on chemical, rheological and mechanical properties of epdm composites. Turkish Journal of Engineering, 7(4), 279–285. https://doi.org/10.31127/tuje.1180753
  • Savc\i, S. (2017). Treatment of biodiesel wastewater using yellow mustard seeds. Turkish Journal of Engineering, 1(1), 11–17.
There are 73 citations in total.

Details

Primary Language English
Subjects Waste Management, Reduction, Reuse and Recycling
Journal Section Articles
Authors

N Senthilkumar 0000-0002-2441-1061

M Yuvaperiyasamy 0000-0002-9667-7192

Early Pub Date January 22, 2025
Publication Date
Submission Date September 23, 2024
Acceptance Date October 30, 2024
Published in Issue Year 2025 Volume: 9 Issue: 3

Cite

APA Senthilkumar, N., & Yuvaperiyasamy, M. (2025). Experimental Investigation and Numerical Modelling of Anaerobic Digestion Process Using De-Oiled Cakes. Turkish Journal of Engineering, 9(3), 460-470. https://doi.org/10.31127/tuje.1554884
AMA Senthilkumar N, Yuvaperiyasamy M. Experimental Investigation and Numerical Modelling of Anaerobic Digestion Process Using De-Oiled Cakes. TUJE. January 2025;9(3):460-470. doi:10.31127/tuje.1554884
Chicago Senthilkumar, N, and M Yuvaperiyasamy. “Experimental Investigation and Numerical Modelling of Anaerobic Digestion Process Using De-Oiled Cakes”. Turkish Journal of Engineering 9, no. 3 (January 2025): 460-70. https://doi.org/10.31127/tuje.1554884.
EndNote Senthilkumar N, Yuvaperiyasamy M (January 1, 2025) Experimental Investigation and Numerical Modelling of Anaerobic Digestion Process Using De-Oiled Cakes. Turkish Journal of Engineering 9 3 460–470.
IEEE N. Senthilkumar and M. Yuvaperiyasamy, “Experimental Investigation and Numerical Modelling of Anaerobic Digestion Process Using De-Oiled Cakes”, TUJE, vol. 9, no. 3, pp. 460–470, 2025, doi: 10.31127/tuje.1554884.
ISNAD Senthilkumar, N - Yuvaperiyasamy, M. “Experimental Investigation and Numerical Modelling of Anaerobic Digestion Process Using De-Oiled Cakes”. Turkish Journal of Engineering 9/3 (January 2025), 460-470. https://doi.org/10.31127/tuje.1554884.
JAMA Senthilkumar N, Yuvaperiyasamy M. Experimental Investigation and Numerical Modelling of Anaerobic Digestion Process Using De-Oiled Cakes. TUJE. 2025;9:460–470.
MLA Senthilkumar, N and M Yuvaperiyasamy. “Experimental Investigation and Numerical Modelling of Anaerobic Digestion Process Using De-Oiled Cakes”. Turkish Journal of Engineering, vol. 9, no. 3, 2025, pp. 460-7, doi:10.31127/tuje.1554884.
Vancouver Senthilkumar N, Yuvaperiyasamy M. Experimental Investigation and Numerical Modelling of Anaerobic Digestion Process Using De-Oiled Cakes. TUJE. 2025;9(3):460-7.
Flag Counter