Research Article
BibTex RIS Cite

AtEdO-BLGBM: A Hybrid Optimization and Boosting Framework for Scalable Intrusion Detection in Heterogeneous IoT Networks

Year 2025, Volume: 9 Issue: 4, 738 - 753, 08.10.2025
https://doi.org/10.31127/tuje.1715511

Abstract

IIntrusion detection is a network security measure that regularly tracks the data flow and prevents malicious activities in Internet of Things (IoT) Networks. A significant rise in connected devices has led to an increase in threats across the IoT. Numerous traditional techniques have been introduced to achieve significant attack detection; however, they have resulted in certain limitations in terms of flexibility, scalability, and performance in heterogeneous infrastructures. To overcome these challenges, this research proposes an Attack-Evaded Optimization Ensemble Bi-directional Long Short-Term Memory Gradient-Boosting Machine (AtEdO-BLGBM) model, which effectively detects intrusions in complex and dynamic network environments. The AtEdO algorithm fine-tunes parameters with better convergence and improved global optima in intrusion detection. Moreover, the proposed model utilizes the AtEdO generative adversarial network to handle class labels, thereby balancing the imbalanced data distribution in heterogeneous networks. The combined BLGBM approach reduces computational costs and enhances the training process, thereby improving detection capability. Finally, the AtEdO-BLGBM model yields 96.78% accuracy, 96.71% negative predictive value and 97.03% positive predictive value, demonstrating its effectiveness in accurate and efficient intrusion detection. In future work, we aim to integrate transformer-based architectures and energy-efficient optimization techniques to enhance real-time detection.

References

  • Da Xu, L., He, W., & Li, S. (2014). Internet of Things in Industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233-2243. https://doi.org/10.1109/tii.2014.2300753
  • Nauman, A., Qadri, Y. A., Amjad, M., Zikria, Y. B., Afzal, M. K., & Kim, S. W. (2020). Multimedia Internet of Things: A Comprehensive survey. IEEE Access, 8, 8202–8250. https://doi.org/10.1109/access.2020.2964280
  • Singh, A. (2024). Real time intrusion detection in edge computing using machine learning techniques. Turkish Journal of Engineering. https://doi.org/10.31127/tuje.1516046
  • Tahaei, H., Afifi, F., Asemi, A., Zaki, F., & Anuar, N. B. (2020). The rise of traffic classification in IoT networks: A survey. Journal of Network and Computer Applications, 154, 102538. https://doi.org/10.1016/j.jnca.2020.102538
  • Guan, Z., Li, J., Wu, L., Zhang, Y., Wu, J., & Du, X. (2018). Achieving efficient and secure data acquisition for cloud-supported internet of things in smart grid. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1810.10746
  • Yu, D., Zhang, L., Chen, Y., Ma, Y., & Chen, J. (2020). Large-Scale IoT devices firmware identification based on weak password. IEEE Access, 8, 7981–7992. https://doi.org/10.1109/access.2020.2964646
  • Zahid, H. M., Saleem, Y., Hayat, F., Khan, F. Z., Alroobaea, R., Almansour, F., . . . Ali, I. (2022). A framework for identification and classification of IoT devices for security analysis in heterogeneous network. Wireless Communications and Mobile Computing, 2022, 1–16. https://doi.org/10.1155/2022/8806184
  • Ayas, M. Ş. (2020). A brief review on attack design and detection strategies for networked cyber-physical systems. Turkish Journal of Engineering, 5(1), 1–https://doi.org/10.31127/tuje.640282
  • Sun, X., & Ansari, N. (2016). EdgeIoT: Mobile edge computing for the internet of things. IEEE Communications Magazine, 54(12), 22–29. https://doi.org/10.1109/mcom.2016.1600492cm
  • Alam, T. (2020). A Reliable Communication Framework and Its Use in Internet of Things https://doi.org/10.36227/techrxiv.12657158.v1
  • Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., & Sikdar, B. (2019). A Survey on IoT Security: Application Areas, Security Threats, and Solution Architectures. IEEE Access, 7(1), 82721–82743. https://doi.org/10.1109/access.2019.2924045
  • Kumari, P., & Jain, A. K. (2023). A comprehensive study of DDoS attacks over IoT network and their countermeasures. Computers & Security, 127, 103096. https://doi.org/10.1016/j.cose.2023.103096
  • Escorcia-Gutierrez, J., Gamarra, M., Leal, E., Madera, N., Soto, C., Mansour, R. F., . . . Gupta, D. (2023). Sea turtle foraging algorithm with hybrid deep learning-based intrusion detection for the internet of drones environment. Computers & Electrical Engineering, 108, 108704. https://doi.org/10.1016/j.compeleceng.2023.108704
  • Sáez-de-Cámara, X., Flores, J. L., Arellano, C., Urbieta, A., & Zurutuza, U. (2023). Clustered federated learning architecture for network anomaly detection in large scale heterogeneous IoT networks. Computers & Security, 131, 103299. https://doi.org/10.1016/j.cose.2023.103299
  • M. Jeyaselvi, Rajesh Kumar Dhanaraj, M. Sathya, Memon, F. H., Lalitha Krishnasamy, Dev, K., … Nawab. (2022). A highly secured intrusion detection system for IoT using EXPSO-STFA feature selection for LAANN to detect attacks. Cluster Computing, 26(1), 559–574. https://doi.org/10.1007/s10586-022-03607-1
  • Perumal, S., & Devarajan, K. (2025). Comparative Performance Analysis of Machine Learning Algorithms: Random Cut Forest, Robust Random Cut Forest, and Amazon Sage Maker Random Cut Forest for Intrusion Detection Systems Using the CIS IDS 2017 Dataset. Turkish Journal of Engineering, 9(3), 535–534. https://doi.org/10.31127/tuje.1614930
  • Wu, J., Wang, Y., Dai, H., Xu, C., & Kent, K. B. (2023). Adaptive Bi-Recommendation and Self-Improving Network for Heterogeneous Domain Adaptation-Assisted IoT Intrusion Detection. arXiv.https://doi.org/10.48550/arxiv.2303.14317
  • Hamouda, D., Mohamed Amine Ferrag, Nadjette Benhamida, Hamid Seridi, & Mohamed Chahine Ghanem. (2024). Revolutionizing intrusion detection in industrial IoT with distributed learning and deep generative techniques. Internet of Things, 26, 101149–101149. https://doi.org/10.1016/j.iot.2024.101149
  • Dheeb Albashish, & Abdulla Aburomman. (2022). Weighted heterogeneous ensemble for the classification of intrusion detection using ant colony optimization for continuous search spaces. Soft Computing, 27(8), 4779–4793. https://doi.org/10.1007/s00500-022-07612-9
  • Mahadik, S., Pawar, P. M., & Muthalagu, R. (2022). Efficient Intelligent Intrusion Detection System for Heterogeneous Internet of Things (HetIoT). Journal of Network and Systems Management, 31(1). https://doi.org/10.1007/s10922-022-09697-x
  • Sinap, V. (2025). A novel hyperparameter tuning method for enhanced intrusion detection in network security. Turkish Journal of Engineering, 9(3), 519–534. https://doi.org/10.31127/tuje.1624366
  • Sulyman Age Abdulkareem, Chuan Heng Foh, François Carrez, & Moessner, K. (2024). A lightweight SEL for attack detection in IoT/IIoT networks. Journal of Network and Computer Applications, 103980–103980. https://doi.org/10.1016/j.jnca.2024.103980
  • Singh, A. (2024). Real Time Intrusion Detection In Edge Computing Using Machine Learning Techniques. Turkish Journal of Engineering. https://doi.org/10.31127/tuje.1516046
  • Idrissi, M. J., Alami, H., El Mahdaouy, A., El Mekki, A., Oualil, S., Yartaoui, Z., & Berrada, I. (2023). Fed-ANIDS: Federated learning for anomaly-based network intrusion detection systems. Expert Systems with Applications, 234, 121000. https://doi.org/10.1016/j.eswa.2023.121000
  • Zang, M., Zheng, C., Koziak, T., Zilberman, N., & Dittmann, L. (2024). Federated In-Network Machine Learning for Privacy-Preserving IoT Traffic Analysis. ACM Transactions on Internet Technology. https://doi.org/10.1145/3696354
  • The TON_IoT Datasets, UNSW Research. (2024,). Retrieved from research.unsw.edu.au. https://dx.doi.org/10.21227/fesz-dm97
  • The Bot-IoT Dataset, UNSW Research. (2023). Retrieved from research.unsw.edu.au https://dx.doi.org/10.21227/r7v2-x988
  • Poon, W., & Wang, H. (2009). Analysis of ordinal categorical data with misclassification. British Journal of Mathematical and Statistical Psychology, 63(1), 17–42. https://doi.org/10.1348/000711008x401314
  • Low, M. X., Yap, T. T. V., Soo, W. K., & Ng, H. (2022). Comparison of Label Encoding and Evidence Counting for Malware Classification. Journal of System and Management Sciences. https://doi.org/10.33168/jsms.2022.0602
  • Sahar Aldhaheri, & Abeer Alhuzali. (2023). SGAN-IDS: Self-Attention-Based Generative Adversarial Network against Intrusion Detection Systems. Sensors, 23(18), 7796–7796. https://doi.org/10.3390/s23187796
  • Mishra, D., Naik, B., Nayak, J., Souri, A., Dash, P. B., & Vimal, S. (2022). Light gradient boosting machine with optimized hyperparameters for identification of malicious access in IoT network. Digital Communications and Networks. https://doi.org/10.1016/j.dcan.2022.10.004
  • Mohammadi-Balani, A., Dehghan Nayeri, M., Azar, A., & Taghizadeh-Yazdi, M. (2021). Golden eagle optimizer: A nature-inspired metaheuristic algorithm. Computers & Industrial Engineering, 152, 107050. https://doi.org/10.1016/j.cie.2020.107050
  • Azizi, M., Talatahari, S., & Gandomi, A. H. (2022). Fire Hawk Optimizer: a novel metaheuristic algorithm. Artificial Intelligence Review. https://doi.org/10.1007/s10462-022-10173-w
There are 33 citations in total.

Details

Primary Language English
Subjects Information Security Management, Data Communications
Journal Section Articles
Authors

Kapil Shrivastava 0000-0002-8777-3721

Manish Tiwari 0000-0001-6619-3624

Prasun Chakrabartı 0000-0001-8062-4144

Publication Date October 8, 2025
Submission Date June 6, 2025
Acceptance Date September 17, 2025
Published in Issue Year 2025 Volume: 9 Issue: 4

Cite

APA Shrivastava, K., Tiwari, M., & Chakrabartı, P. (2025). AtEdO-BLGBM: A Hybrid Optimization and Boosting Framework for Scalable Intrusion Detection in Heterogeneous IoT Networks. Turkish Journal of Engineering, 9(4), 738-753. https://doi.org/10.31127/tuje.1715511
AMA Shrivastava K, Tiwari M, Chakrabartı P. AtEdO-BLGBM: A Hybrid Optimization and Boosting Framework for Scalable Intrusion Detection in Heterogeneous IoT Networks. TUJE. October 2025;9(4):738-753. doi:10.31127/tuje.1715511
Chicago Shrivastava, Kapil, Manish Tiwari, and Prasun Chakrabartı. “AtEdO-BLGBM: A Hybrid Optimization and Boosting Framework for Scalable Intrusion Detection in Heterogeneous IoT Networks”. Turkish Journal of Engineering 9, no. 4 (October 2025): 738-53. https://doi.org/10.31127/tuje.1715511.
EndNote Shrivastava K, Tiwari M, Chakrabartı P (October 1, 2025) AtEdO-BLGBM: A Hybrid Optimization and Boosting Framework for Scalable Intrusion Detection in Heterogeneous IoT Networks. Turkish Journal of Engineering 9 4 738–753.
IEEE K. Shrivastava, M. Tiwari, and P. Chakrabartı, “AtEdO-BLGBM: A Hybrid Optimization and Boosting Framework for Scalable Intrusion Detection in Heterogeneous IoT Networks”, TUJE, vol. 9, no. 4, pp. 738–753, 2025, doi: 10.31127/tuje.1715511.
ISNAD Shrivastava, Kapil et al. “AtEdO-BLGBM: A Hybrid Optimization and Boosting Framework for Scalable Intrusion Detection in Heterogeneous IoT Networks”. Turkish Journal of Engineering 9/4 (October2025), 738-753. https://doi.org/10.31127/tuje.1715511.
JAMA Shrivastava K, Tiwari M, Chakrabartı P. AtEdO-BLGBM: A Hybrid Optimization and Boosting Framework for Scalable Intrusion Detection in Heterogeneous IoT Networks. TUJE. 2025;9:738–753.
MLA Shrivastava, Kapil et al. “AtEdO-BLGBM: A Hybrid Optimization and Boosting Framework for Scalable Intrusion Detection in Heterogeneous IoT Networks”. Turkish Journal of Engineering, vol. 9, no. 4, 2025, pp. 738-53, doi:10.31127/tuje.1715511.
Vancouver Shrivastava K, Tiwari M, Chakrabartı P. AtEdO-BLGBM: A Hybrid Optimization and Boosting Framework for Scalable Intrusion Detection in Heterogeneous IoT Networks. TUJE. 2025;9(4):738-53.
Flag Counter