Research Article
BibTex RIS Cite

Kurutma sıcaklıklarının Mantarın (Agaricus bisporus L.) Rehidrasyon, Model, Kuruma Performansı ve Yüzey Alanı Değerlerine Etkisi

Year 2020, Volume: 1 Issue: 1, 74 - 84, 30.06.2020

Abstract

Ülkemizde mantar en önemli tarımsal ihracat ürünleri arasında yer alan ve aynı zamanda hem kullanım alanı çeşitliliği hem de sağlık değerleri açısında oldukça popüler bir üründür. Mantar, bünyesinde %90-95 gibi yüksek bir nem barındırmasından dolayı taze olarak uzun süre saklanamadan kısa süre içerisinde bozulmaktadır. Kurutma işlemi ile tarımsal ürünlerin bünyelerindeki yüksek nem miktarını ticari nem seviyelerine kadar düşürülerek bozulması engellenmekte ve alternatif ürün seçeneği halini almaktadır. Bu çalışmada, kültür mantarı 50, 60 ve 70ºC sıcaklıklarda 12.54±1.21 kuru baz (k.b.) değerinden 0.13±0.02 (k.b.) son nem değerine kadar kurutulmuştur. 50, 60 ve 70ºC sıcaklıklarında kurutulan mantar örneklerinin ortalama kuruma süreleri sırasıyla 9, 7.5 ve 4.5 saat olarak belirlenmiştir. İşlenen tüm kuruma modelleri arasında mantar örneklerinin kuruma verilerini en iyi 70ºC sıcaklıkta Wang ve Singh eşitliği tahmin etmiştir. Farklı sıcaklık değerlerinde kurutulan mantar örnekleri sırasıyla 20, 40 ve 70ºC sıcaklıklarındaki su banyosu ortamlarının rehidrasyon oranlarına etkisinin önemli olduğu bulunmuştur. En yüksek rehidrasyon oranı 1.84 ile 70ºC sıcaklıkta yapılan su banyosunda ve 50ºC sıcaklıkta kurutulan mantar örneklerinde tespit edilmiştir. En düşük rehidrasyon oranı ise 0.19 ile yine 70ºC sıcaklıkta yapılan su banyosu işleminde ve 60ºC sıcaklıkta kurutulan mantar örneklerinde bulunmuştur. Kurutma sıcaklarının yine mantar örneklerinin toplam alan değişim oranlarını etkilediği (p<0.05) görülmüştür. En yüksek alan değişim oranı %53.45 ile 70ºC sıcaklığında kurutulan mantar örneklerinde belirlenirken en düşük ise %50.82 ile 50ºC sıcaklık değerinde kurutulan örneklerde belirlenmiştir.

References

  • Abuşka M ve Doğan H (2010). Endüstriyel tip ısı pompalı kurutucuda çekirdeksiz üzümün kurutulması. Politeknik Dergisi, 13 (4): 271-279.
  • Aida FMNA, Shuhaimi M, Yazid M ve Maaruf AG (2009). Mushroom as a potential source of prebiotics: A review. Trends in Food Science & Technology, 20, 567-575.
  • Ananno AA, Masud MH, Dabnichkki P ve Ahmed A (2020). Design and numerical analysis of a hybrid geothermal PCM flat plate solar collector dryer for developing countries. Solar Energy, 196, 270-286.
  • Carrión C, Mulet A, García-Pérez JV ve Cárcel JA (2017). Ultrasonically assisted atmospheric freeze-drying of button mushroom. Drying kinetics and product quality. Dryıng Technology, 36, (15), 1814–1823, https://doi.org/10.1080/07373937.2017.1417870.
  • Cucurullo G, Giordano L, Matello A ve Cinquanta L (2018). Drying rate control in microwave assisted processing of sliced apples. Biosystems Engineering, 170, 24-30.
  • Doymaz İ (2011). Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat Mass Transfer, 47, 277-285.
  • Ghanbarian D, Torki-Harchegani M, Sadeghi M ve Pirbalouti AG (2019). Ultrasonically improved convective drying of peppermint leaves: Influence on the process time and energetic indices. Renewable Energy, 153, 67-73.
  • Gonzalez RC ve Woods RE (2007). Digital Image Processing, 3th Ed., (pp. 1-7), A.B.D., New Jersey: Prentice Hall.
  • Jähne B (2005). Digital Image Processing, Springer, 6th Ed., (pp. 7-19), Berlin.Jena S ve Das H (2007). Modelling for vacuum drying characteristics of coconut presscake. Journal of food engineering 79: 92-99.
  • Lewis WK (1921). The rate of drying of solid materials. Industrial Engineering Chemistry, 13: 427-443.
  • Liu ZL, Bai JW, Wang SX, Meng JS, Wang H, Yu XL, Gao ZJ ve Xiao HW (2019). Prediction of energy and exergy of mushroom slices drying in hot air impingement dryer by artificial neural network. Dryıng Technology, https://doi.org/10.1080/07373937.2019.1607873.
  • Maseko I, Mabhaudhi T, Ncube B, Tesfay S, Araya HT, Fessehazion MK, Chimonyo VGP, Ndhlala AR ve Plooy CPD (2019). Postharvest drying maintains phenolic, flavonoid and gallotannin content of some cultivated African leafy vegetables. Scientia Horticulturae, 255, (20), 70-76.
  • Mattila P, Salo-Väänänen P, Könkö K, Aro H ve Jalava T (2002). Basic composition and amino acid contents of mushrooms cultivated in Finland. Journal of Agricultural and Food Chemistry, 50 (22), 6419-6422, 10.1021/jf020608m.
  • Palacios I, Lozano M, Moro C, D'Arrigo M, Rostagno MA ve Martínez JA (2011). Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chemistry, 128 (3): 674-678, 10.1016/j.foodchem.2011.03.085.
  • Panagopoulou EA, Chiou A, Nikolidaki EK, Christea M ve Karathanos VT (2019). Corinthian raisins (Vitis vinifera L., var. Apyrena) antioxidant and sugar content as affected by the drying process: a 3‐year study. Journal of the Science of Food and Agriculture, 99, (2), 915-922.
  • Piskov S, Timchenko L, Grimm WD, Rzhepakovsky I, Avanesyan S, Sizonenko M ve Kurchenko V (2020). Effects of Various Drying Methods on Some Physico-Chemical Properties and the Antioxidant Profile and ACE Inhibition Activity of Oyster Mushrooms (Pleurotus Ostreatus). Foods, 9, 160; doi:10.3390/foods9020160.
  • Satimehin AA, Oluwamukomi MO, Enujiugha VN ve Bello M (2018). Drying characteristics and mathematical modelling of the drying kinetics of oyster mushroom (Pleurotus ostreatus). IDS’2018 – 21st International Drying Symposium València, Spain, 11-14, DOI: http://dx.doi.org/10.4995/ids2018.2018.7847.
  • Shishir MRI, Karim N, Bao T, Gowd V, Ding T, Sun C ve Chen W (2019). Cold plasma pretreatment – A novel approach to improve the hot air drying characteristics, kinetic parameters, and nutritional attributes of shiitake mushroom. Dryıng Technology, https://doi.org/10.1080/07373937.2019.1683860.
  • Taşova M (2019). Effect on the effective diffusion and activation energy values of pea (Pisum sativum L.) grains of drying temperature. International Scientific and Vocational Studies Journal, 3 (1), 8-13.
  • Vallespir F, Crescenzo L, Rodriquez O, Marra F ve Simal S (2019). Intensification of Low-Temperature Drying of Mushroom by Means of Power Ultrasound: Effectson Drying Kinetics and Quality Parameters. Food and Bioprocess Technology, 12:839–851, https://doi.org/10.1007/s11947-019-02263-5.
  • Viji P, Sai KSS, Debbarma J, Das PHD, Rao BM ve Ravishankar CN (2019). Evaluation of physicochemical characteristics of microwave vacuum dried mackerel and inhibition of oxidation by essential oils. Journal of Food Science and Technology, 56, (4), 1890–1898.
  • Wang CY ve Singh RP (1978). A single layer drying equation for rough rice. ASAE Paper No: 78-3001, ASAE, St. Joseph, MI.
  • Wang J, Law CL, Nema PK, Zhao JH, Liu ZL, Deng LZ, Gao ZJ ve Xiao HW (2018). Pulsed vacuum drying enhances drying kinetics and quality of lemon slices. Journal of Food Engineering, 224, 129-138.
  • Xiao HW, Bai JW, Xie L, Sun DW ve Gao ZJ (2015). Thin-layer air impingement drying enhances drying rate of American ginseng (Panax quinquefolium L.) slices with quality attributes considered. Food Bioprod. Process, 94, 581-591.
  • Yılmaz FM ve Bastıoğlu AZ (2020). Production of phenolic enriched mushroom powder as affected by impregnation method and air drying temperature. LWT-Food Science and Technology, 122, 109036.

The Effect of Drying Temperatures on Rehydration, Model, Drying Performance and Surface Area Values of Mushroom ( Agaricus bisporus L.)

Year 2020, Volume: 1 Issue: 1, 74 - 84, 30.06.2020

Abstract

Mushroom is one of the most important agricultural export products in our country and at the same time, it is a very popular product both in terms of usage area and health values. The  mushroom spoils in a short time without being stored fresh for a long time due to its high humidity of 90-95%. With the drying process, the degradation of agricultural products is lowered down to commercial humidity levels and thus it becomes an alternative product option. In this study, the cultivated mushroom was dried from 12.54 ± 1.21 dry base (d.b.) to 0.13 ± 0.02 (d.b.)  final humidity at 50, 60 and 70ºC. Average drying times of mushroom samples dried at 50, 60 and 70ºC were determined as 9, 7.5 and 4.5 hours, respectively. Wang and Sıngh equation  estimates the drying data of mushroom samples among all drying models processed at the best 70ºC temperature. It has been found that the effect of the fungus samples dried at different temperatures on the rehydration rates of water bath environments at 20, 40 and 70ºC respectively. The highest rehydration rate was determined in the water bath made at a temperature of 1.84 and 70ºC and mushroom samples dried at 50ºC. The lowest rehydration rate was found in the water bath process at 70 ºC with 0.19 and in mushroom samples dried at 60ºC. It was observed that drying temperatures also affected the total area change rates of mushroom samples (p<0.05). The highest field change rate was determined in the fungi samples dried at 70ºC with 53.45%, while the lowest was determined in the samples dried at 50ºC with 50.82%. 

References

  • Abuşka M ve Doğan H (2010). Endüstriyel tip ısı pompalı kurutucuda çekirdeksiz üzümün kurutulması. Politeknik Dergisi, 13 (4): 271-279.
  • Aida FMNA, Shuhaimi M, Yazid M ve Maaruf AG (2009). Mushroom as a potential source of prebiotics: A review. Trends in Food Science & Technology, 20, 567-575.
  • Ananno AA, Masud MH, Dabnichkki P ve Ahmed A (2020). Design and numerical analysis of a hybrid geothermal PCM flat plate solar collector dryer for developing countries. Solar Energy, 196, 270-286.
  • Carrión C, Mulet A, García-Pérez JV ve Cárcel JA (2017). Ultrasonically assisted atmospheric freeze-drying of button mushroom. Drying kinetics and product quality. Dryıng Technology, 36, (15), 1814–1823, https://doi.org/10.1080/07373937.2017.1417870.
  • Cucurullo G, Giordano L, Matello A ve Cinquanta L (2018). Drying rate control in microwave assisted processing of sliced apples. Biosystems Engineering, 170, 24-30.
  • Doymaz İ (2011). Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat Mass Transfer, 47, 277-285.
  • Ghanbarian D, Torki-Harchegani M, Sadeghi M ve Pirbalouti AG (2019). Ultrasonically improved convective drying of peppermint leaves: Influence on the process time and energetic indices. Renewable Energy, 153, 67-73.
  • Gonzalez RC ve Woods RE (2007). Digital Image Processing, 3th Ed., (pp. 1-7), A.B.D., New Jersey: Prentice Hall.
  • Jähne B (2005). Digital Image Processing, Springer, 6th Ed., (pp. 7-19), Berlin.Jena S ve Das H (2007). Modelling for vacuum drying characteristics of coconut presscake. Journal of food engineering 79: 92-99.
  • Lewis WK (1921). The rate of drying of solid materials. Industrial Engineering Chemistry, 13: 427-443.
  • Liu ZL, Bai JW, Wang SX, Meng JS, Wang H, Yu XL, Gao ZJ ve Xiao HW (2019). Prediction of energy and exergy of mushroom slices drying in hot air impingement dryer by artificial neural network. Dryıng Technology, https://doi.org/10.1080/07373937.2019.1607873.
  • Maseko I, Mabhaudhi T, Ncube B, Tesfay S, Araya HT, Fessehazion MK, Chimonyo VGP, Ndhlala AR ve Plooy CPD (2019). Postharvest drying maintains phenolic, flavonoid and gallotannin content of some cultivated African leafy vegetables. Scientia Horticulturae, 255, (20), 70-76.
  • Mattila P, Salo-Väänänen P, Könkö K, Aro H ve Jalava T (2002). Basic composition and amino acid contents of mushrooms cultivated in Finland. Journal of Agricultural and Food Chemistry, 50 (22), 6419-6422, 10.1021/jf020608m.
  • Palacios I, Lozano M, Moro C, D'Arrigo M, Rostagno MA ve Martínez JA (2011). Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chemistry, 128 (3): 674-678, 10.1016/j.foodchem.2011.03.085.
  • Panagopoulou EA, Chiou A, Nikolidaki EK, Christea M ve Karathanos VT (2019). Corinthian raisins (Vitis vinifera L., var. Apyrena) antioxidant and sugar content as affected by the drying process: a 3‐year study. Journal of the Science of Food and Agriculture, 99, (2), 915-922.
  • Piskov S, Timchenko L, Grimm WD, Rzhepakovsky I, Avanesyan S, Sizonenko M ve Kurchenko V (2020). Effects of Various Drying Methods on Some Physico-Chemical Properties and the Antioxidant Profile and ACE Inhibition Activity of Oyster Mushrooms (Pleurotus Ostreatus). Foods, 9, 160; doi:10.3390/foods9020160.
  • Satimehin AA, Oluwamukomi MO, Enujiugha VN ve Bello M (2018). Drying characteristics and mathematical modelling of the drying kinetics of oyster mushroom (Pleurotus ostreatus). IDS’2018 – 21st International Drying Symposium València, Spain, 11-14, DOI: http://dx.doi.org/10.4995/ids2018.2018.7847.
  • Shishir MRI, Karim N, Bao T, Gowd V, Ding T, Sun C ve Chen W (2019). Cold plasma pretreatment – A novel approach to improve the hot air drying characteristics, kinetic parameters, and nutritional attributes of shiitake mushroom. Dryıng Technology, https://doi.org/10.1080/07373937.2019.1683860.
  • Taşova M (2019). Effect on the effective diffusion and activation energy values of pea (Pisum sativum L.) grains of drying temperature. International Scientific and Vocational Studies Journal, 3 (1), 8-13.
  • Vallespir F, Crescenzo L, Rodriquez O, Marra F ve Simal S (2019). Intensification of Low-Temperature Drying of Mushroom by Means of Power Ultrasound: Effectson Drying Kinetics and Quality Parameters. Food and Bioprocess Technology, 12:839–851, https://doi.org/10.1007/s11947-019-02263-5.
  • Viji P, Sai KSS, Debbarma J, Das PHD, Rao BM ve Ravishankar CN (2019). Evaluation of physicochemical characteristics of microwave vacuum dried mackerel and inhibition of oxidation by essential oils. Journal of Food Science and Technology, 56, (4), 1890–1898.
  • Wang CY ve Singh RP (1978). A single layer drying equation for rough rice. ASAE Paper No: 78-3001, ASAE, St. Joseph, MI.
  • Wang J, Law CL, Nema PK, Zhao JH, Liu ZL, Deng LZ, Gao ZJ ve Xiao HW (2018). Pulsed vacuum drying enhances drying kinetics and quality of lemon slices. Journal of Food Engineering, 224, 129-138.
  • Xiao HW, Bai JW, Xie L, Sun DW ve Gao ZJ (2015). Thin-layer air impingement drying enhances drying rate of American ginseng (Panax quinquefolium L.) slices with quality attributes considered. Food Bioprod. Process, 94, 581-591.
  • Yılmaz FM ve Bastıoğlu AZ (2020). Production of phenolic enriched mushroom powder as affected by impregnation method and air drying temperature. LWT-Food Science and Technology, 122, 109036.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Muhammed Taşova 0000-0001-5025-0807

Musafa Güzel 0000-0002-6069-3561

Publication Date June 30, 2020
Submission Date March 16, 2020
Acceptance Date April 22, 2020
Published in Issue Year 2020 Volume: 1 Issue: 1

Cite

APA Taşova, M., & Güzel, M. (2020). Kurutma sıcaklıklarının Mantarın (Agaricus bisporus L.) Rehidrasyon, Model, Kuruma Performansı ve Yüzey Alanı Değerlerine Etkisi. Turkish Journal of Agricultural Engineering Research, 1(1), 74-84.

26831    32449  32450 32451 3245232453

International peer double-blind reviewed journal

The articles in the Turkish Journal of Agricultural Engineering Research are open access articles and the articles are licensed under a Creative Commons Attribution 4.0 International License (CC-BY-NC-4.0)(https://creativecommons.org/licenses/by-nc/4.0/deed.en). This license allows third parties to share and adapt the content for non-commercial purposes with proper attribution to the original work. Please visit for more information this link https://creativecommons.org/licenses/by-nc/4.0/ 

Turkish Journal of Agricultural Engineering Research (TURKAGER) is indexed/abstracted in Information Matrix for the Analysis of Journals (MIAR), EBSCO, CABI, Food Science & Technology Abstracts (FSTA), CAS Source Index (CASSI).

Turkish Journal of Agricultural Engineering Research (TURKAGER) does not charge any application, publication, or subscription fees.

Publisher: Ebubekir ALTUNTAŞ

For articles citations to the articles of the Turkish Journal of Agricultural Engineering Research (TURKAGER), please click: