Araştırma Makalesi
BibTex RIS Kaynak Göster

ORMAN YOLU PLANLAMASINDA CBS TABANLI HEYELAN DUYARLILIĞI HARİTALAMASININ DEĞERLENDİRİLMESİ: TANIR DERESİ HAVZASI ÖRNEĞİ

Yıl 2025, Cilt: 9 Sayı: 2, 253 - 264, 27.10.2025
https://doi.org/10.32328/turkjforsci.1771112

Öz

Dağlık ormanlık alanlarda bölmeden çıkarma, orman yol ağları kullanılarak gerçekleştirilir. Türkiye'de ormanlık alanlar yüksek dağlık bölgelerde ve dik yamaçlı arazilerde yer almaktadır. Dağlık alanlarda yol ağları planlaması, negatif ve pozitif kardinal noktalar dikkate alınarak yapılmalıdır. Yol yapımı sonrasında heyelanlar ve kütle hareketleri tetiklenir ve büyük çaplı toprak hareketlerine yol açabilir. Heyelan duyarlılık haritalaması (HDH), heyelanlara yatkın alanları tahmin etmek için sıklıkla kullanılır. Heyelan duyarlılık haritalamasının oluşturulmasında CBS tabanlı makine öğrenimi yöntemleri sıklıkla kullanılır. Bu çalışmada, HDH, CBS tabanlı lojistik regresyon yöntemi kullanılarak oluşturulmuştur. Çalışma alanı olarak, yoğun orman yönetimi faaliyetlerinin yürütüldüğü ve orman ve kırsal yolların bulunduğu Kahramanmaraş ilinin Suçatı bölgesindeki Tanır Nehri havzası seçilmiştir. HDH, belirli başlangıç ve bitiş noktaları ile inşa edilecek yeni bir orman yolunun güzergâhını belirlemek için kullanılmıştır. Heyelan verileri, Maden Araştırma ve Arama Genel Müdürlüğü'nden temin edilmiştir. HDH'nin oluşturulmasında eğim, bakı, eğrilik, arazi kullanımı, litoloji, NDVI, yola uzaklık, akarsuya uzaklık parametreleri kullanılmıştır. HDH 'ye göre, çalışma alanı heyelan potansiyeli açısından çok yüksek, yüksek, orta, düşük ve çok düşük olmak üzere beş sınıfa ayrılmıştır. Sonuçlar, çalışma alanının yaklaşık %60'ının yüksek ve çok yüksek heyelan potansiyeline sahip alanlardan oluştuğunu göstermektedir. Doğaya dayalı çözümlerin ve yer hareketinin en aza indirilmesinin kritik öneme sahip olduğu hassas orman havzalarında, CBS tabanlı heyelan duyarlılık haritaları yol güzergâhlarının belirlenmesinde son derece doğru alternatifler sunmaktadır.

Kaynakça

  • Akay, A.E. (2006). Minimizing total costs of forest roads with computer-aided design model. Sadhana, 31, 621-633.
  • Akgün, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides, 9(1), 93-106.
  • Akgün, A. (2018). Bulanık uyarlanabilir rezonans teorisi (FuzzyART) yöntemi kullanılarak heyelan duyarlılık analizi: Tonya (Trabzon) örneği. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 8(1), 135-146.
  • Aslam, B., Maqsoom, A., Khalil, U., Ghorbanzadeh, O., Blaschke, T., Farooq, D., Tufail, R.F., Suhail, S.A., Ghamisi, P. (2022). Evaluation of different landslide susceptibility models for a local scale in the Chitral District, Northern Pakistan. Sensors, 22(9), 3107. https://doi.org/10.3390/s22093107
  • Ayalew, L., Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2), 15-31.
  • Aydınoğlu, A. Ç., Altürk, G. (2021). Heyelan duyarlılık haritalarının istatistik ve makine öğrenmesi teknikleri kullanılarak üretilmesi: Taşlıdere Havzası örneği (Rize). Coğrafya Dergisi, (43), 159-176.
  • Bao, S., Liu, J., Wang, L., Konečný, M., Che, X., Xu, S., Li, P. (2022). Landslide susceptibility mapping by fusing convolutional neural networks and vision transformer. Sensors, 23(1), 88.
  • Bugday, E., Akay, A.E. (2019). Evaluation of forest road network planning in landslide sensitive areas by GIS-based multi-criteria decision making approaches in Ihsangazi watershed, Northern Turkey. Šumarski list, 143(7-8), 325-336.
  • Can, A., Dagdelenler, G., Ercanoglu, M., Sonmez, H. (2019). Landslide susceptibility mapping at Ovacık-Karabük (Turkey) using different artificial neural network models: comparison of training algorithms. Bulletin of Engineering Geology and the Environment, 78(1), 89-102.
  • Chowdhury, M.S., Rahman, M.N., Sheikh, M.S., Sayeid, M. A., Mahmud, K.H., Hafsa, B. (2024). GIS-based landslide susceptibility mapping using logistic regression, random forest and decision and regression tree models in Chattogram District, Bangladesh. Heliyon, 10(1).
  • Dai, F.C., Lee, C.F., Li, J., Xu, Z.W. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental geology, 40, 381-391.
  • Eker, R., Aydın, A. (2014). Ormanların heyelan oluşumu üzerindeki etkileri. Turkish Journal of Forestry, 15(1), 84-93.
  • Eker, R., Aydin, A. (2016). Landslide susceptibility assessment of forest roads. European Journal of Forest Engineering, 2(2), 54-60.
  • Falaschi, F., Giacomelli, F., Federici. PR., Puccinelli. A., Avanzi. GD., Pochini. A., Ribolini. A. (2009) Logistic regression versus artificial neural networks: landslide susceptibility evaluation in a sample area of the Serchio River valley, Italy. Nat Hazards, 50(3):551–569. doi:10.1007/s11069-009-9356-5
  • Gökçeoğlu, C., Ercanoğlu, M. (2001). Heyelan duyarlılık haritalarının hazırlanmasında kullanılan parametrelere ilişkin belirsizlikler. Yerbilimleri, 22(23), 189-206.
  • Hacisalihoğlu, S., Gümüş, S., Kezik, U. (2018). Land use conversion effects triggered by tea plantation on landslide occurrence and soil loss in Northeastern Anatolia, Turkey. Fresenius Environmental Bulletin, 27(5):2933–2942.
  • Kaya Topaçli, Z., Ozcan, A. K., Gokceoglu, C. (2024). Performance comparison of landslide susceptibility maps derived from logistic regression and random forest models in the Bolaman Basin, Türkiye. Natural Hazards Review, 25(1), 04023054.
  • Kavzoglu, T., Sahin, E.K., Colkesen, I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11, 425–439. https://doi.org/10.1007/s10346-013-0391-7
  • Khan, H., Shafique, M., Khan, M.A., Bacha, M.A., Shah, S.U., Calligaris, C. (2019). Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 22(1), 11-24.
  • Lee, S. (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data journals. International Journal of Remote Sensing, 26(7):1477–1491. doi:10.1080/01431160412331331012
  • Liu, X., Shao, S., & Shao, S. (2024). Landslide susceptibility zonation using the analytical hierarchy process (AHP) in the Great Xi’an Region, China. Scientific reports, 14(1), 2941.
  • Meng, Q., Miao, F., Zhen, J., Wang, X., Wang, A., Peng, Y., Fan, Q. (2016). GIS-based landslide susceptibility mapping with logistic regression, analytical hierarchy process, and combined fuzzy and support vector machine methods: a case study from Wolong Giant Panda Natural Reserve, China. Bulletin of Engineering Geology and the Environment, 75, 923-944: https://doi.org/10.1007/s10064-015-0786-x
  • Moayedi, H., Xu, M., Naderian, P., Dehrashid, A. A., Thi, Q. T. (2024). Validation of four optimization evolutionary algorithms combined with Artificial Neural Network (ANN) for landslide susceptibility mapping: A case study of Gilan, Iran. Ecological Engineering, 201, 107214.
  • Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in ecology & evolution, 20(9), 503-510.
  • Sahin, E.K., Colkesen, I. (2021). Performance analysis of advanced decision tree-based ensemble learning algorithms for landslide susceptibility mapping. Geocarto International, 36(11), 1253-1275.
  • Şahin, E.K. (2018). Heyelan duyarlılık haritası için adımsal regresyona dayalı faktör seçme yönteminin etkinliğinin araştırılması. Harita Dergisi, 159, 1-15.
  • Sharma, M., Upadhyay, R.K., Tripathi, G., Kishore, N., Shakya, A., Meraj, G., ... & Thakur, S. N. (2023). Assessing landslide susceptibility along India’s National Highway 58: A comprehensive approach integrating remote sensing, GIS, and logistic regression analysis. Conservation, 3(3), 444-459.
  • Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena, 72(1), 1-12.
  • Yalcin, A., Reis, S., Aydinoglu, A.C., Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85(3), 274-287.
  • Yılmaz, O.S. (2023). Frekans oranı yöntemiyle coğrafi bilgi sistemi ortamında heyelan duyarlılık haritasının üretilmesi: Manisa Demirci Tekeler Köyü örneği. Geomatik, 8(1), 42-54.
  • Yüksel, K., Gülci, N., Akay, A. E., Gülci, S. (2025). Evaluation of eco-friendly soil slope stabilization techniques for forest roads by using an Artificial Neural Network (ANN). International Journal of Sediment Research, 40(3), 476-488.
  • Zhang, Y., Wen, H., Xie, P., Hu, D., Zhang, J., Zhang, W. (2021). Hybrid-optimized logistic regression model of landslide susceptibility along mountain highway. Bulletin of Engineering Geology and the Environment, 80(10), 7385-7401.
  • Zhao, Y., Cen, Y. (2013). Data Mining Applications with R; Academic Press: Cambridge, MA, USA, ISBN 9780124115118.

ASSESSMENT OF GIS-BASED LANDSLIDE SUSCEPTIBILITY MAPPING IN FOREST ROAD PLANNING: THE TANIR STREAM WATERSHED CASE STUDY

Yıl 2025, Cilt: 9 Sayı: 2, 253 - 264, 27.10.2025
https://doi.org/10.32328/turkjforsci.1771112

Öz

Primer transport in mountainous forest areas is carried out using forest road networks. In Turkey, forest areas are located in high mountainous areas and steep slope land. Road networks planning in mountainous areas should be done by considering negative and positive cardinal points. Landslides and mass movements are triggered after road construction and can lead to massive earth movements. The landslide susceptibility mapping (LSM) is often used to predict landslide-prone areas. GIS-based machine learning methods are frequently used in the creation of landslide susceptibility mapping. In this study, LSM was created using GIS-based logistic regression method. It was selected the Tanır Stream Watershed as the study area, in the Suçatı region of Kahramanmaraş province, where intensive forest management activities are carried out and forest and rural roads are located. The LSM was used to determine the route of a new forest road to be constructed with certain starting and end points. Landslide data were obtained from General Directorate of Mineral Research and Exploration. The parameters of slope, aspect, curvature, land use, lithology, NDVI, distance to road, distance to stream were used to create the LSM. According to LSM, the study area was divided into five classes in terms of landslide potential: very high, high, medium, low and very low. The results show that approximately 60% of the study area consists of areas with high and very high landslide potential. In sensitive forest watersheds where nature-based solutions and minimized ground movement are critical, GIS-based landslide susceptibility maps offer highly accurate alternatives for locating road routes.

Etik Beyan

A part of this study was presented as an abstract proceeding at the 5th International Conference of Forest Engineering and Technologies (FETEC 2024) in Ljubljana, Slovenia.

Teşekkür

The author would like to thank the General Directorate of Forestry and General Directorate of Mineral Research and Explorations for providing data.

Kaynakça

  • Akay, A.E. (2006). Minimizing total costs of forest roads with computer-aided design model. Sadhana, 31, 621-633.
  • Akgün, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides, 9(1), 93-106.
  • Akgün, A. (2018). Bulanık uyarlanabilir rezonans teorisi (FuzzyART) yöntemi kullanılarak heyelan duyarlılık analizi: Tonya (Trabzon) örneği. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 8(1), 135-146.
  • Aslam, B., Maqsoom, A., Khalil, U., Ghorbanzadeh, O., Blaschke, T., Farooq, D., Tufail, R.F., Suhail, S.A., Ghamisi, P. (2022). Evaluation of different landslide susceptibility models for a local scale in the Chitral District, Northern Pakistan. Sensors, 22(9), 3107. https://doi.org/10.3390/s22093107
  • Ayalew, L., Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1-2), 15-31.
  • Aydınoğlu, A. Ç., Altürk, G. (2021). Heyelan duyarlılık haritalarının istatistik ve makine öğrenmesi teknikleri kullanılarak üretilmesi: Taşlıdere Havzası örneği (Rize). Coğrafya Dergisi, (43), 159-176.
  • Bao, S., Liu, J., Wang, L., Konečný, M., Che, X., Xu, S., Li, P. (2022). Landslide susceptibility mapping by fusing convolutional neural networks and vision transformer. Sensors, 23(1), 88.
  • Bugday, E., Akay, A.E. (2019). Evaluation of forest road network planning in landslide sensitive areas by GIS-based multi-criteria decision making approaches in Ihsangazi watershed, Northern Turkey. Šumarski list, 143(7-8), 325-336.
  • Can, A., Dagdelenler, G., Ercanoglu, M., Sonmez, H. (2019). Landslide susceptibility mapping at Ovacık-Karabük (Turkey) using different artificial neural network models: comparison of training algorithms. Bulletin of Engineering Geology and the Environment, 78(1), 89-102.
  • Chowdhury, M.S., Rahman, M.N., Sheikh, M.S., Sayeid, M. A., Mahmud, K.H., Hafsa, B. (2024). GIS-based landslide susceptibility mapping using logistic regression, random forest and decision and regression tree models in Chattogram District, Bangladesh. Heliyon, 10(1).
  • Dai, F.C., Lee, C.F., Li, J., Xu, Z.W. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental geology, 40, 381-391.
  • Eker, R., Aydın, A. (2014). Ormanların heyelan oluşumu üzerindeki etkileri. Turkish Journal of Forestry, 15(1), 84-93.
  • Eker, R., Aydin, A. (2016). Landslide susceptibility assessment of forest roads. European Journal of Forest Engineering, 2(2), 54-60.
  • Falaschi, F., Giacomelli, F., Federici. PR., Puccinelli. A., Avanzi. GD., Pochini. A., Ribolini. A. (2009) Logistic regression versus artificial neural networks: landslide susceptibility evaluation in a sample area of the Serchio River valley, Italy. Nat Hazards, 50(3):551–569. doi:10.1007/s11069-009-9356-5
  • Gökçeoğlu, C., Ercanoğlu, M. (2001). Heyelan duyarlılık haritalarının hazırlanmasında kullanılan parametrelere ilişkin belirsizlikler. Yerbilimleri, 22(23), 189-206.
  • Hacisalihoğlu, S., Gümüş, S., Kezik, U. (2018). Land use conversion effects triggered by tea plantation on landslide occurrence and soil loss in Northeastern Anatolia, Turkey. Fresenius Environmental Bulletin, 27(5):2933–2942.
  • Kaya Topaçli, Z., Ozcan, A. K., Gokceoglu, C. (2024). Performance comparison of landslide susceptibility maps derived from logistic regression and random forest models in the Bolaman Basin, Türkiye. Natural Hazards Review, 25(1), 04023054.
  • Kavzoglu, T., Sahin, E.K., Colkesen, I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11, 425–439. https://doi.org/10.1007/s10346-013-0391-7
  • Khan, H., Shafique, M., Khan, M.A., Bacha, M.A., Shah, S.U., Calligaris, C. (2019). Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 22(1), 11-24.
  • Lee, S. (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data journals. International Journal of Remote Sensing, 26(7):1477–1491. doi:10.1080/01431160412331331012
  • Liu, X., Shao, S., & Shao, S. (2024). Landslide susceptibility zonation using the analytical hierarchy process (AHP) in the Great Xi’an Region, China. Scientific reports, 14(1), 2941.
  • Meng, Q., Miao, F., Zhen, J., Wang, X., Wang, A., Peng, Y., Fan, Q. (2016). GIS-based landslide susceptibility mapping with logistic regression, analytical hierarchy process, and combined fuzzy and support vector machine methods: a case study from Wolong Giant Panda Natural Reserve, China. Bulletin of Engineering Geology and the Environment, 75, 923-944: https://doi.org/10.1007/s10064-015-0786-x
  • Moayedi, H., Xu, M., Naderian, P., Dehrashid, A. A., Thi, Q. T. (2024). Validation of four optimization evolutionary algorithms combined with Artificial Neural Network (ANN) for landslide susceptibility mapping: A case study of Gilan, Iran. Ecological Engineering, 201, 107214.
  • Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, C. J., Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in ecology & evolution, 20(9), 503-510.
  • Sahin, E.K., Colkesen, I. (2021). Performance analysis of advanced decision tree-based ensemble learning algorithms for landslide susceptibility mapping. Geocarto International, 36(11), 1253-1275.
  • Şahin, E.K. (2018). Heyelan duyarlılık haritası için adımsal regresyona dayalı faktör seçme yönteminin etkinliğinin araştırılması. Harita Dergisi, 159, 1-15.
  • Sharma, M., Upadhyay, R.K., Tripathi, G., Kishore, N., Shakya, A., Meraj, G., ... & Thakur, S. N. (2023). Assessing landslide susceptibility along India’s National Highway 58: A comprehensive approach integrating remote sensing, GIS, and logistic regression analysis. Conservation, 3(3), 444-459.
  • Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena, 72(1), 1-12.
  • Yalcin, A., Reis, S., Aydinoglu, A.C., Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85(3), 274-287.
  • Yılmaz, O.S. (2023). Frekans oranı yöntemiyle coğrafi bilgi sistemi ortamında heyelan duyarlılık haritasının üretilmesi: Manisa Demirci Tekeler Köyü örneği. Geomatik, 8(1), 42-54.
  • Yüksel, K., Gülci, N., Akay, A. E., Gülci, S. (2025). Evaluation of eco-friendly soil slope stabilization techniques for forest roads by using an Artificial Neural Network (ANN). International Journal of Sediment Research, 40(3), 476-488.
  • Zhang, Y., Wen, H., Xie, P., Hu, D., Zhang, J., Zhang, W. (2021). Hybrid-optimized logistic regression model of landslide susceptibility along mountain highway. Bulletin of Engineering Geology and the Environment, 80(10), 7385-7401.
  • Zhao, Y., Cen, Y. (2013). Data Mining Applications with R; Academic Press: Cambridge, MA, USA, ISBN 9780124115118.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Orman Ürünleri Transportu ve Ölçme Bilgisi, Ormancılık Yönetimi ve Çevre
Bölüm Araştırma Makalesi
Yazarlar

Kıvanç Yüksel 0000-0001-9660-5028

Yayımlanma Tarihi 27 Ekim 2025
Gönderilme Tarihi 23 Ağustos 2025
Kabul Tarihi 11 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Yüksel, K. (2025). ASSESSMENT OF GIS-BASED LANDSLIDE SUSCEPTIBILITY MAPPING IN FOREST ROAD PLANNING: THE TANIR STREAM WATERSHED CASE STUDY. Turkish Journal of Forest Science, 9(2), 253-264. https://doi.org/10.32328/turkjforsci.1771112
AMA Yüksel K. ASSESSMENT OF GIS-BASED LANDSLIDE SUSCEPTIBILITY MAPPING IN FOREST ROAD PLANNING: THE TANIR STREAM WATERSHED CASE STUDY. Turk J For Sci. Ekim 2025;9(2):253-264. doi:10.32328/turkjforsci.1771112
Chicago Yüksel, Kıvanç. “ASSESSMENT OF GIS-BASED LANDSLIDE SUSCEPTIBILITY MAPPING IN FOREST ROAD PLANNING: THE TANIR STREAM WATERSHED CASE STUDY”. Turkish Journal of Forest Science 9, sy. 2 (Ekim 2025): 253-64. https://doi.org/10.32328/turkjforsci.1771112.
EndNote Yüksel K (01 Ekim 2025) ASSESSMENT OF GIS-BASED LANDSLIDE SUSCEPTIBILITY MAPPING IN FOREST ROAD PLANNING: THE TANIR STREAM WATERSHED CASE STUDY. Turkish Journal of Forest Science 9 2 253–264.
IEEE K. Yüksel, “ASSESSMENT OF GIS-BASED LANDSLIDE SUSCEPTIBILITY MAPPING IN FOREST ROAD PLANNING: THE TANIR STREAM WATERSHED CASE STUDY”, Turk J For Sci, c. 9, sy. 2, ss. 253–264, 2025, doi: 10.32328/turkjforsci.1771112.
ISNAD Yüksel, Kıvanç. “ASSESSMENT OF GIS-BASED LANDSLIDE SUSCEPTIBILITY MAPPING IN FOREST ROAD PLANNING: THE TANIR STREAM WATERSHED CASE STUDY”. Turkish Journal of Forest Science 9/2 (Ekim2025), 253-264. https://doi.org/10.32328/turkjforsci.1771112.
JAMA Yüksel K. ASSESSMENT OF GIS-BASED LANDSLIDE SUSCEPTIBILITY MAPPING IN FOREST ROAD PLANNING: THE TANIR STREAM WATERSHED CASE STUDY. Turk J For Sci. 2025;9:253–264.
MLA Yüksel, Kıvanç. “ASSESSMENT OF GIS-BASED LANDSLIDE SUSCEPTIBILITY MAPPING IN FOREST ROAD PLANNING: THE TANIR STREAM WATERSHED CASE STUDY”. Turkish Journal of Forest Science, c. 9, sy. 2, 2025, ss. 253-64, doi:10.32328/turkjforsci.1771112.
Vancouver Yüksel K. ASSESSMENT OF GIS-BASED LANDSLIDE SUSCEPTIBILITY MAPPING IN FOREST ROAD PLANNING: THE TANIR STREAM WATERSHED CASE STUDY. Turk J For Sci. 2025;9(2):253-64.