Research Article
BibTex RIS Cite

Year 2025, Volume: 7 Issue: 2, 232 - 243, 30.12.2025
https://doi.org/10.51489/tuzal.1670906

Abstract

References

  • Alenezi, R. A., & Aldaihani, N. (2023). Investigation of the atmospheric chemical properties over Kuwait. Water, Air, and Soil Pollution, 234(4), 216. https://doi.org/10.1007/s11270-023-06319-7
  • Ansari, N., Kumari, P., Kumar, R., Kumar, P., Shamshad, A., Hossain, S., ... & Javed, A. (2025). Seasonal patterns of air pollution in Delhi: interplay between meteorological conditions and emission sources. Environmental Geochemistry and Health, 47(5), 1-20. https://doi.org/10.1007/s10653-025-02474-0
  • Ashmore, M. R. (2005). Assessing the future global impacts of ozone on vegetation. Plant, Cell & Environment, 28(8), 949–964. https://doi.org/10.1111/j.1365-3040.2005.01341.x
  • Buchwitz, M., Reuter, M., Schneising, O., Hewson, W., Detmers, R. G., Boesch, H., et al. (2017). Global satellite observations of column-averaged carbon dioxide and methane: The GHG-CCI XCO₂ and XCH₄ CRDP3 data set. Remote Sensing of Environment, 203, 276–295. https://doi.org/10.1016/j.rse.2016.12.027.
  • Cedeno Jimenez, J. R., & Brovelli, M. A. (2023). NO2 concentration estimation at urban ground level by integrating Sentinel 5P data and ERA5 using machine learning: The Milan (Italy) case study. Remote Sensing, 15(22), 5400. https://doi.org/10.3390/rs15225400
  • Çilek, M. Ü. (2022). Spatial and temporal analysis of tropospheric nitrogen dioxide (NO2) in COVID-19 pandemic: Adana-Mersin region. Yuzuncu Yil University Journal of the Institute of Natural and Applied Sciences, 27(3), 581-594. https://doi.org/10.53433/yyufbed.1119418
  • Demir, S. (2023). Determination of burned areas at different threshold values using Sentinel-2 satellite images on google earth engine. Turkish Journal of Remote Sensing and GIS, 4(2), 262-275. https://doi.org/10.48123/rsgis.1264208
  • Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P., & Fraser, P. J. (1991). Three-dimensional model synthesis of the global methane cycle. Journal of Geophysical Research: Atmospheres, 96(D7), 13033–13065. https://doi.org/10.1029/91JD01247
  • Liu, H., Wang, N., Chen, D., Tan, Q., Song, D., & Huang, F. (2022). How photochemically consumed volatile organic compounds affect ozone formation: A case study in Chengdu, China. Atmosphere, 13(10), 1534. https://doi.org/10.3390/atmos13101534
  • Lunt, M. F., Palmer, P. I., Feng, L., Taylor, C. M., Boesch, H., & Parker, R. J. (2019). An increase in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite data. Atmospheric Chemistry and Physics, 19(23), 14721–14740. https://doi.org/10.5194/acp-19-14721-2019
  • Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R., Nesser, H., Sheng, J.-X., et al. (2019). Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015. Atmospheric Chemistry and Physics, 19(11), 7859–7881. https://doi.org/10.5194/acp-19-7859-2019
  • Mehrabi, M., Scaioni, M., & Previtali, M. (2023). Forecasting air quality in Kiev during 2022 military conflict using Sentinel 5P and optimized machine learning. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–10. https://doi.org/10.1109/TGRS.2023.3245061
  • Miller, S. M., Michalak, A. M., Detmers, R. G., Hasekamp, O. P., Bruhwiler, L. M. P., & Schwietzke, S. (2019). China’s coal mine methane regulations have not curbed growing emissions. Nature Communications, 10(1), 303. https://doi.org/10.1038/s41467-018-07891-7
  • Olivier, J. G. J., Van Aardenne, J. A., Dentener, F. J., Pagliari, V., Ganzeveld, L. N., & Peters, J. A. H. W. (2005). Recent trends in global greenhouse gas emissions: Regional trends 1970–2000 and spatial distribution of key sources in 2000. Environmental Sciences, 2(2–3), 81–99. https://doi.org/10.1080/15693430500400345
  • Peng, B., Guan, K., Pan, M., Wu, G., Jiang, C., Yang, Y., & Li, J. (2020). Assessing the benefit of satellite-based solar-induced chlorophyll fluorescence in crop yield prediction. International Journal of Applied Earth Observation and Geoinformation, 90, 102109. https://doi.org/10.1016/j.jag.2020.102109
  • Pisoni, E., Farina, M., Carnevale, C., & Piroddi, L. (2009). Forecasting peak air pollution levels using NARX models. Engineering Applications of Artificial Intelligence, 22(4), 593–602. https://doi.org/10.1016/j.engappai.2008.09.009
  • Saad Baqer, N., Mohammed, H. A., Albahri, A. S., Zaidan, A. A., Al-qaysi, Z. T., & Albahri, O. S. (2022). Development of the Internet of Things sensory technology for ensuring proper indoor air quality in hospital facilities: Taxonomy analysis, challenges, motivations, open issues and recommended solution. Measurement, 192, 110871. https://doi.org/10.1016/j.measurement.2022.110871
  • Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., et al. (2019). The global methane budget 2000–2017. Earth System Science Data Discussions, 2019, 1–136. https://doi.org/10.5194/essd-2020-198
  • Schneider, P., Hamer, P. D., Kylling, A., Shetty, S., & Stebel, K. (2021). Spatiotemporal patterns in data availability of the Sentinel-5P NO₂ product over urban areas in Norway. Remote Sensing, 13(11), 2095. https://doi.org/10.3390/rs13112095
  • Shindell, D., Kuylenstierna, J. C. I., Vignati, E., van Dingenen, R., Amann, M., Klimont, Z., et al. (2012). Simultaneously mitigating near-term climate change and improving human health and food security. Science, 335(6065), 183–189. https://doi.org/10.1126/science.1210026
  • Siddiqui, A., Halder, S., Chauhan, P., & Kumar, P. (2020). COVID-19 pandemic and city-level nitrogen dioxide (NO₂) reduction for urban centres of India. Journal of the Indian Society of Remote Sensing, 48(7), 999–1006. https://doi.org/10.1007/s12524-020-01156-8
  • Zhang, Y., Gautam, R., Pandey, S., Omara, M., Maasakkers, J. D., Sadavarte, P., et al. (2020). Quantifying methane emissions from the largest oil-producing basin in the United States from space. Science Advances, 6(17), eaaz5120. https://doi.org/10.1126/sciadv.aaz5120
  • Zhu, S., Zhu, H., Xu, J., Zeng, Q., Zhang, D., & Liu, X. (2022). Satellite remote sensing of daily surface ozone in a mountainous area. IEEE Geoscience and Remote Sensing Letters, 19, 1–5. https://doi.org/10.1109/LGRS.2022.3146583

Integrating remote sensing and machine learning for methane emission prediction in Konya

Year 2025, Volume: 7 Issue: 2, 232 - 243, 30.12.2025
https://doi.org/10.51489/tuzal.1670906

Abstract

Methane (CH₄) is a potent greenhouse gas influenced by various environmental factors. This study employs remote sensing data and machine learning techniques to analyze the relationship between CH₄ concentration and key environmental variables in Konya, Türkiye. Using datasets from MODIS, CHIRPS, NASA FLDAS, Copernicus Sentinel-5P, and Landsat 8, we developed regression models to predict CH₄ distribution. Four machine learning models—Random Forest (RF), Support Vector Machine (SVM), Gradient Boosting Trees (GBT), and Classification and Regression Trees (CART)—were trained and evaluated based on R, R², MAE, and RMSE metrics. The results indicate that GBT achieved the highest accuracy (R = 0.89, R² = 0.78, MAE = 2.574, RMSE = 4.16), while SVM exhibited poor predictive performance. The findings highlight the effectiveness of tree-based ensemble models in methane estimation, suggesting that integrating diverse environmental factors enhances predictive accuracy. These insights contribute to improving methane monitoring strategies and guiding mitigation policies.

References

  • Alenezi, R. A., & Aldaihani, N. (2023). Investigation of the atmospheric chemical properties over Kuwait. Water, Air, and Soil Pollution, 234(4), 216. https://doi.org/10.1007/s11270-023-06319-7
  • Ansari, N., Kumari, P., Kumar, R., Kumar, P., Shamshad, A., Hossain, S., ... & Javed, A. (2025). Seasonal patterns of air pollution in Delhi: interplay between meteorological conditions and emission sources. Environmental Geochemistry and Health, 47(5), 1-20. https://doi.org/10.1007/s10653-025-02474-0
  • Ashmore, M. R. (2005). Assessing the future global impacts of ozone on vegetation. Plant, Cell & Environment, 28(8), 949–964. https://doi.org/10.1111/j.1365-3040.2005.01341.x
  • Buchwitz, M., Reuter, M., Schneising, O., Hewson, W., Detmers, R. G., Boesch, H., et al. (2017). Global satellite observations of column-averaged carbon dioxide and methane: The GHG-CCI XCO₂ and XCH₄ CRDP3 data set. Remote Sensing of Environment, 203, 276–295. https://doi.org/10.1016/j.rse.2016.12.027.
  • Cedeno Jimenez, J. R., & Brovelli, M. A. (2023). NO2 concentration estimation at urban ground level by integrating Sentinel 5P data and ERA5 using machine learning: The Milan (Italy) case study. Remote Sensing, 15(22), 5400. https://doi.org/10.3390/rs15225400
  • Çilek, M. Ü. (2022). Spatial and temporal analysis of tropospheric nitrogen dioxide (NO2) in COVID-19 pandemic: Adana-Mersin region. Yuzuncu Yil University Journal of the Institute of Natural and Applied Sciences, 27(3), 581-594. https://doi.org/10.53433/yyufbed.1119418
  • Demir, S. (2023). Determination of burned areas at different threshold values using Sentinel-2 satellite images on google earth engine. Turkish Journal of Remote Sensing and GIS, 4(2), 262-275. https://doi.org/10.48123/rsgis.1264208
  • Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P., & Fraser, P. J. (1991). Three-dimensional model synthesis of the global methane cycle. Journal of Geophysical Research: Atmospheres, 96(D7), 13033–13065. https://doi.org/10.1029/91JD01247
  • Liu, H., Wang, N., Chen, D., Tan, Q., Song, D., & Huang, F. (2022). How photochemically consumed volatile organic compounds affect ozone formation: A case study in Chengdu, China. Atmosphere, 13(10), 1534. https://doi.org/10.3390/atmos13101534
  • Lunt, M. F., Palmer, P. I., Feng, L., Taylor, C. M., Boesch, H., & Parker, R. J. (2019). An increase in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite data. Atmospheric Chemistry and Physics, 19(23), 14721–14740. https://doi.org/10.5194/acp-19-14721-2019
  • Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R., Nesser, H., Sheng, J.-X., et al. (2019). Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015. Atmospheric Chemistry and Physics, 19(11), 7859–7881. https://doi.org/10.5194/acp-19-7859-2019
  • Mehrabi, M., Scaioni, M., & Previtali, M. (2023). Forecasting air quality in Kiev during 2022 military conflict using Sentinel 5P and optimized machine learning. IEEE Transactions on Geoscience and Remote Sensing, 61, 1–10. https://doi.org/10.1109/TGRS.2023.3245061
  • Miller, S. M., Michalak, A. M., Detmers, R. G., Hasekamp, O. P., Bruhwiler, L. M. P., & Schwietzke, S. (2019). China’s coal mine methane regulations have not curbed growing emissions. Nature Communications, 10(1), 303. https://doi.org/10.1038/s41467-018-07891-7
  • Olivier, J. G. J., Van Aardenne, J. A., Dentener, F. J., Pagliari, V., Ganzeveld, L. N., & Peters, J. A. H. W. (2005). Recent trends in global greenhouse gas emissions: Regional trends 1970–2000 and spatial distribution of key sources in 2000. Environmental Sciences, 2(2–3), 81–99. https://doi.org/10.1080/15693430500400345
  • Peng, B., Guan, K., Pan, M., Wu, G., Jiang, C., Yang, Y., & Li, J. (2020). Assessing the benefit of satellite-based solar-induced chlorophyll fluorescence in crop yield prediction. International Journal of Applied Earth Observation and Geoinformation, 90, 102109. https://doi.org/10.1016/j.jag.2020.102109
  • Pisoni, E., Farina, M., Carnevale, C., & Piroddi, L. (2009). Forecasting peak air pollution levels using NARX models. Engineering Applications of Artificial Intelligence, 22(4), 593–602. https://doi.org/10.1016/j.engappai.2008.09.009
  • Saad Baqer, N., Mohammed, H. A., Albahri, A. S., Zaidan, A. A., Al-qaysi, Z. T., & Albahri, O. S. (2022). Development of the Internet of Things sensory technology for ensuring proper indoor air quality in hospital facilities: Taxonomy analysis, challenges, motivations, open issues and recommended solution. Measurement, 192, 110871. https://doi.org/10.1016/j.measurement.2022.110871
  • Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., et al. (2019). The global methane budget 2000–2017. Earth System Science Data Discussions, 2019, 1–136. https://doi.org/10.5194/essd-2020-198
  • Schneider, P., Hamer, P. D., Kylling, A., Shetty, S., & Stebel, K. (2021). Spatiotemporal patterns in data availability of the Sentinel-5P NO₂ product over urban areas in Norway. Remote Sensing, 13(11), 2095. https://doi.org/10.3390/rs13112095
  • Shindell, D., Kuylenstierna, J. C. I., Vignati, E., van Dingenen, R., Amann, M., Klimont, Z., et al. (2012). Simultaneously mitigating near-term climate change and improving human health and food security. Science, 335(6065), 183–189. https://doi.org/10.1126/science.1210026
  • Siddiqui, A., Halder, S., Chauhan, P., & Kumar, P. (2020). COVID-19 pandemic and city-level nitrogen dioxide (NO₂) reduction for urban centres of India. Journal of the Indian Society of Remote Sensing, 48(7), 999–1006. https://doi.org/10.1007/s12524-020-01156-8
  • Zhang, Y., Gautam, R., Pandey, S., Omara, M., Maasakkers, J. D., Sadavarte, P., et al. (2020). Quantifying methane emissions from the largest oil-producing basin in the United States from space. Science Advances, 6(17), eaaz5120. https://doi.org/10.1126/sciadv.aaz5120
  • Zhu, S., Zhu, H., Xu, J., Zeng, Q., Zhang, D., & Liu, X. (2022). Satellite remote sensing of daily surface ozone in a mountainous area. IEEE Geoscience and Remote Sensing Letters, 19, 1–5. https://doi.org/10.1109/LGRS.2022.3146583
There are 23 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Article
Authors

Nehir Uyar 0000-0003-3358-3145

Submission Date April 7, 2025
Acceptance Date June 2, 2025
Early Pub Date December 14, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

IEEE N. Uyar, “Integrating remote sensing and machine learning for methane emission prediction in Konya”, TJRS, vol. 7, no. 2, pp. 232–243, 2025, doi: 10.51489/tuzal.1670906.

 SCImago Journal & Country Rank             Flag Counter