Year 2025,
Volume: 7 Issue: 2, 391 - 406, 30.12.2025
Pritam K Meshram
,
Kishan Singh Rawat
,
Sudhir Kumar Singh
References
-
Alok, S., Nathani, P., & Rawat, K. S., (2025). Bridging the Gap: Application of earth observational data set and remote sensing techniques for monitoring of water quality. Ecology, Environment and Conservation, http://doi.org/10.53550/EEC.2025.v31i02.019
-
Arora, M., Setia, R., Singh, R., Singh, S. K., Kumar, S., & Pateriya, B. (2025). Mapping of flood inundated areas using earth observation data and cloud computing platform. Journal of Atmospheric and Solar-Terrestrial Physics, 106567. https://doi.org/10.1016/j.jastp.2025.106567
-
Behera, A., Rawat, K. S., Kumar, S., Almuflih, A. S., Almakayeel, N., & Qureshi, M. R. N. (2025). Simulation and projection of land use and land cover using remote sensing data and CA–Markov model case study. Geocarto International, 40(1), 2450441. https://doi.org/10.1080/10106049.2025.2450441
-
Bouvet, A., & Le Toan, T. (2011). Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta. Remote Sensing of Environment, 115(4), 1090-1101. https://doi.org/10.1016/j.rse.2010.12.014
-
Bridhikitti, A., & Overcamp, T. J. (2012). Estimation of Southeast Asian rice paddy areas with different ecosystems from moderate-resolution satellite imagery. Agriculture, Ecosystems & Environment, 146(1), 113-120. https://doi.org/10.1016/j.agee.2011.10.016
-
Bullock, E. L., Woodcock, C. E., & Holden, C. E. (2020). Improved change monitoring using an ensemble of time series algorithms. Remote Sensing of Environment, 238, 111165. https://doi.org/10.1016/j.rse.2019.04.018
-
Dong, J., & Xiao, X. (2016). Evolution of regional to global paddy rice mapping methods: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 119, 214-227. https://doi.org/10.1016/j.isprsjprs.2016.05.010
-
Fang, H. (1998). Rice crop area estimation of an administrative division in China using remote sensing data. International Journal of Remote Sensing, 19(17), 3411-3419. https://doi.org/10.1080/014311698214073
-
Frolking, S., Qiu, J., Boles, S., Xiao, X., Liu, J., Zhuang, Y., Li, C., & Qin, X. (2002). Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Global Biogeochemical Cycles, 16(4), 38-1. https://doi.org/10.1029/2001GB001425
-
Gumma, M. K., Nelson, A., Thenkabail, P. S., & Singh, A. N. (2011). Mapping rice areas of South Asia using MODIS multitemporal data. Journal of applied remote sensing, 5(1), 053547-053547. https://doi.org/10.1117/1.3619838
-
Hegde, A. A., Umesh, P., & Tahiliani, M. P. (2024). Comparison of neural networks for binary spatial classification of rice field by studying temporal pattern using dual polarimetric SAR measurements. Journal of the Indian Society of Remote Sensing, 1-19. https://doi.org/10.1007/s12524-024-02025-7
-
Hong, S. Y., Park, C. W., Jeon, Y. A., Shin, S., Lee, K. D., Yu, J. H., & Jung, H. J. (2024). History, status, and prospects of remote sensing in agriculture in Republic of Korea. Korean Journal of Remote Sensing, 40(5), 769-781. https://doi.org/10.7780/kjrs.2024.40.5.2.7
-
Jodhani, K. H., Gupta, N., Parmar, A. D., Bhavsar, J. D., Patel, D., Singh, S. K., Mishra, U., & Omar, G. J. (2024). Unveiling seasonal fluctuations in air quality using google earth engine: a case study for Gujarat, India. Topics in Catalysis, 67(15), 961-982. https://doi.org/10.1007/s11244-024-01957-1
-
Jodhani, K. H., Patel, D., Madhavan, N., Gupta, N., Singh, S. K., & Pandey, M. (2025). ML-based land use and land cover classification: Assessing performance and predicting future changes. Journal of Hydrologic Engineering, 30(4), 05025011. https://doi.org/10.1061/JHYEFF.HEENG-641
-
Cohen, W. B., Yang, Z., & Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—tools for calibration and validation. Remote Sensing of Environment, 114(12), 2911-2924. https://doi.org/10.1016/j.rse.2010.07.010
-
Lemoine G., & Léo, O. (2015). Crop mapping applications at scale: Using google earth engine to enable global crop area and status monitoring using free and open data sources, Proceedings Book of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy,1496-1499, https://doi.org/10.1109/IGARSS.2015.7326063
-
Li, K., Brisco, B., Yun, S., & Touzi, R. (2012). Polarimetric decomposition with RADARSAT-2 for rice mapping and monitoring. Canadian Journal of Remote Sensing, 38(2), 169-179. https://doi.org/10.5589/m12-024
-
Lin, S., Qi, Z., Li, X., Zhang, H., Lv, Q., & Huang, D. (2024). A phenological-knowledge-independent method for automatic paddy rice mapping with time series of polarimetric SAR images. ISPRS Journal of Photogrammetry and Remote Sensing, 218, 628-644. https://doi.org/10.1016/j.isprsjprs.2024.09.035
-
Liu, X., Zhai, H., Shen, Y., Lou, B., Jiang, C., Li, T., Hussain, S. B., & Shen, G. (2020). Large-scale crop mapping from multisource remote sensing images in google earth engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 414-427. https://doi.org/10.1109/JSTARS.2019.2963539
-
Magidi, J., Nhamo, L., Mpandeli, S., & Mabhaudhi, T. (2021). Application of the random forest classifier to map irrigated areas using google earth engine. Remote Sensing, 13(5), 876. https://doi.org/10.3390/rs13050876
-
McCloy, K. R., Smith, F. R., & Robinson, M. R. (1987). Monitoring rice areas using Landsat MSS data. International Journal of Remote Sensing, 8(5), 741-749. https://doi.org/10.1080/01431168708948685
-
Meshram, P., Rawat, K. S., & Tripathi, V. K. (2024a). Sentinel-1A data analysis for rice classification utilizing random forests and support Vector Machine. Environment and Ecology, 42(4C), 2037–2043. https://doi.org/10.60151/envec/hyxu4637
-
Meshram, P. K., Rawat, K. S., Singh. G. (2024b). Kharif rice crop acreage and yield estimation using Microwave & Optical remote sensing time series satellite data: A case study of the eastern region of Maharashtra. Acta Scientiarum Polonorum. http://dx.doi.org/10.15576/ASP.FC/191716
-
Meshram, P. K, Rawat, Kumar, S., & Singh, S. K. (2023). Crop-type classification using Sentinel-2A and in situ data: case study of Shri Dungargarh Taluk of Rajasthan, India. Springer, Proceedings in Smart Technologies for Energy, Environment & Sustainable Development [ICSTEESD 2020], GH Raisoni College of Engineering, Nagpur, India. https://doi.org/10.1007/978-981-16-6879-1_18
-
Meshram, P. K., & Rawat, K.S. (2023). Detection of paddy fields in the Eastern region of Maharashtra during the Kharif season using Temporal Sentinel-1A SAR data and Geographic Information System (GIS). Proceedings Book of InCACCT-2023. Gharuan, India, 539-542. https://doi.org/10.1109/InCACCT57535.2023
-
Monfreda, C., Ramankutty, N., & Foley, J. A. (2008). Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global biogeochemical cycles, 22(1). https://doi.org/10.1029/2007GB002947
-
Mutanga, O., & Kumar, L. (2019). Google earth engine applications. Remote sensing, 11(5), 591. https://doi.org/10.3390/rs11050591
-
Nguyen, T. T. H., De Bie, C. A. J. M., Ali, A., Smaling, E. M. A., & Chu, T. H. (2012). Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through hyper-temporal SPOT NDVI image analysis. International journal of remote sensing, 33(2), 415-434. https://doi.org/10.1080/01431161.2010.532826
-
Oguro, Y., Suga, Y., Takeuchi, S., Ogawa, M., Konishi, T., & Tsuchiya, K. (2001). Comparison of SAR and optical sensor data for monitoring of rice plant around Hiroshima. Advances in Space Research, 28(1), 195-200. https://doi.org/10.1016/S0273-1177(01)00345-3
-
Pan, X. Z., Uchida, S., Liang, Y., Hirano, A., & Sun, B. (2010). Discriminating different landuse types by using multitemporal NDXI in a rice planting area. International Journal of Remote Sensing, 31(3), 585-596. https://doi.org/10.1080/01431160902894442
-
Park, S., Im, J., Park, S., Yoo, C., Han, H., & Rhee, J. (2018). Classification and mapping of paddy rice by combining Landsat and SAR time series data. Remote Sensing, 10(3), 447. https://doi.org/10.3390/rs10030447
-
Pittman, K., Hansen, M. C., Becker-Reshef, I., Potapov, P. V., & Justice, C. O. (2010). Estimating global cropland extent with multi-year MODIS data. Remote Sensing, 2(7), 1844-1863. https://doi.org/10.3390/rs2071844
-
Qiu, B., Li, W., Tang, Z., Chen, C., & Qi, W. (2015). Mapping paddy rice areas based on vegetation phenology and surface moisture conditions. Ecological Indicators, 56, 79-86. https://doi.org/10.1016/j.ecolind.2015.03.039
-
Rao, P. N., & Rao, V. R. (1987). Rice crop identification and area estimation using remotely-sensed data from Indian cropping patterns. International Journal of Remote Sensing, 8(4), 639-650. https://doi.org/10.1080/01431168708948670
-
Sakamoto, T., Van Phung, C., Kotera, A., Nguyen, K. D., & Yokozawa, M. (2009). Analysis of rapid expansion of inland aquaculture and triple rice-cropping areas in a coastal area of the Vietnamese Mekong Delta using MODIS time-series imagery. Landscape and Urban Planning, 92(1), 34-46. https://doi.org/10.1016/j.landurbplan.2009.02.002
-
Schubert, A., Small, D., Miranda, N., Geudtner, D., & Meier, E., (2015). Sentinel-1A Product Geolocation Accuracy: Commissioning Phase Results. Remote sensing. 7, 9431-9449. https://doi.org/10.3390/rs70709431
-
Sun, H. S., Huang, J. F., Huete, A. R., Peng, D. L., & Zhang, F. (2009). Mapping paddy rice with multi-date moderate-resolution imaging spectroradiometer (MODIS) data in China. Journal of Zhejiang University-SCIENCE A, 10(10), 1509-1522. https://doi.org/10.1631/jzus.A0820536
-
Sun, L., Yang, T., Lou, Y., Shi, Q., & Zhang, L. (2024). Paddy rice mapping based on phenology matching and cultivation pattern analysis combining multi-source data in Guangdong, China. Journal of Remote Sensing, 4, 0152. https://doi.org/10.34133/remotesensing.0152
-
Tiwari, M., Shukla, S., Rawat, K. S., Mishra, V. N., Singh, S. K., & Shukla, K. (2025). High-resolution waterlogging mapping along Ghazipur Drain in Delhi: A UAV-based bathymetric analysis approach. Nature Environment and Pollution Technology, 24(4). https://doi.org/10.46488/NEPT.2025.v24i04.B4316
-
Torbick, N., Salas, W. A., Hagen, S., & Xiao, X. (2010). Monitoring rice agriculture in the Sacramento Valley, USA with multitemporal PALSAR and MODIS imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2), 451-457. https://doi.org/10.1109/JSTARS.2010.2091493
-
Torre, D. M. G., Gao, J., & Macinnis Ng, C. (2021). Remote sensing-based estimation of rice yields using various models: A critical review. Geo-Spatial Information Science, 24(4), 580-603. https://doi.org/10.1080/10095020.2021.1936656
-
Wang, X., Liu, Z., & Chen, H. (2022). Investigating flood impact on crop production under a comprehensive and spatially explicit risk evaluation framework. Agriculture, 12(4), 484. https://doi.org/10.3390/agriculture12040484
-
Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., Salas, W., & Moore III, B. (2005). Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote sensing of environment, 95(4), 480-492. https://doi.org/10.1016/j.rse.2004.12.009
-
Yang, J., Hu, Q., Li, W., Song, Q., Cai, Z., Zhang, X., & Wu, W. (2024). An automated sample generation method by integrating phenology domain optical-SAR features in rice cropping pattern mapping. Remote Sensing of Environment, 314, 114387. https://doi.org/10.1016/j.rse.2024.114387
-
Yang, S., Shen, S., Li, B., Le Toan, T., & He, W. (2008). Rice mapping and monitoring using ENVISAT ASAR data. IEEE Geoscience and Remote Sensing Letters, 5(1), 108-112. https://doi.org/10.1109/LGRS.2007.912089
-
Yaotong, C., Hui, L., & Meng, Z. (2019). Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data. Advances in Space Research 64, 2233-2244. https://doi.org/10.1016/j.asr.2019.08.042
-
Yeom, J. M., & Kim, H. O. (2015). Comparison of NDVIs from GOCI and MODIS data towards improved assessment of crop temporal dynamics in the case of paddy rice. Remote Sensing, 7(9), 11326-11343. https://doi.org/10.3390/rs70911326
-
Zhang, H., He, B., & Xing, J. (2022). Mapping paddy rice in complex landscapes with Landsat time series data and superpixel-based deep learning method. Remote Sensing, 14(15), 3721. https://doi.org/10.3390/rs14153721
-
Zhao, R., Li, Y., & Ma, M. (2021). Mapping paddy rice with satellite remote sensing: A review. Sustainability, 13(2), 503. https://doi.org/10.3390/su13020503
Multi-year paddy planting acreage estimation based on SAR and MODIS satellite data
Year 2025,
Volume: 7 Issue: 2, 391 - 406, 30.12.2025
Pritam K Meshram
,
Kishan Singh Rawat
,
Sudhir Kumar Singh
Abstract
Precise and immediate details about paddy planting areas are crucial for agricultural planning, management of water resources, and yield estimation. The aim was to use multi-year Sentinel-1 SAR and MODIS-NDVI to estimate paddy planting acreage in the high rainfall zone of eastern Maharashtra, India. In this study, satellite data was analyzed for the period of 2020-2022, during the paddy growing season (June-November) using a random forest classifier to distinguish between paddy and non-paddy pixels. Sentinel-1 SAR (VH polarization) showed better accuracy than MODIS NDVI in identifying paddy fields, with an 84.7% to 86.4% (k value 0.80 – 0.82) overall accuracy compared to 67.2% - 71.3% (k value 0.58 - 0.61) for MODIS NDVI. However, MODIS NDVI was better at mapping the morphology of the fields. The study suggests that Sentinel-1 SAR (VH polarization) can be used effectively in cloud-prone areas to monitor paddy transplantation and acreage estimation, compensating for the missing data caused by clouds and rain.
Supporting Institution
NA
References
-
Alok, S., Nathani, P., & Rawat, K. S., (2025). Bridging the Gap: Application of earth observational data set and remote sensing techniques for monitoring of water quality. Ecology, Environment and Conservation, http://doi.org/10.53550/EEC.2025.v31i02.019
-
Arora, M., Setia, R., Singh, R., Singh, S. K., Kumar, S., & Pateriya, B. (2025). Mapping of flood inundated areas using earth observation data and cloud computing platform. Journal of Atmospheric and Solar-Terrestrial Physics, 106567. https://doi.org/10.1016/j.jastp.2025.106567
-
Behera, A., Rawat, K. S., Kumar, S., Almuflih, A. S., Almakayeel, N., & Qureshi, M. R. N. (2025). Simulation and projection of land use and land cover using remote sensing data and CA–Markov model case study. Geocarto International, 40(1), 2450441. https://doi.org/10.1080/10106049.2025.2450441
-
Bouvet, A., & Le Toan, T. (2011). Use of ENVISAT/ASAR wide-swath data for timely rice fields mapping in the Mekong River Delta. Remote Sensing of Environment, 115(4), 1090-1101. https://doi.org/10.1016/j.rse.2010.12.014
-
Bridhikitti, A., & Overcamp, T. J. (2012). Estimation of Southeast Asian rice paddy areas with different ecosystems from moderate-resolution satellite imagery. Agriculture, Ecosystems & Environment, 146(1), 113-120. https://doi.org/10.1016/j.agee.2011.10.016
-
Bullock, E. L., Woodcock, C. E., & Holden, C. E. (2020). Improved change monitoring using an ensemble of time series algorithms. Remote Sensing of Environment, 238, 111165. https://doi.org/10.1016/j.rse.2019.04.018
-
Dong, J., & Xiao, X. (2016). Evolution of regional to global paddy rice mapping methods: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 119, 214-227. https://doi.org/10.1016/j.isprsjprs.2016.05.010
-
Fang, H. (1998). Rice crop area estimation of an administrative division in China using remote sensing data. International Journal of Remote Sensing, 19(17), 3411-3419. https://doi.org/10.1080/014311698214073
-
Frolking, S., Qiu, J., Boles, S., Xiao, X., Liu, J., Zhuang, Y., Li, C., & Qin, X. (2002). Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Global Biogeochemical Cycles, 16(4), 38-1. https://doi.org/10.1029/2001GB001425
-
Gumma, M. K., Nelson, A., Thenkabail, P. S., & Singh, A. N. (2011). Mapping rice areas of South Asia using MODIS multitemporal data. Journal of applied remote sensing, 5(1), 053547-053547. https://doi.org/10.1117/1.3619838
-
Hegde, A. A., Umesh, P., & Tahiliani, M. P. (2024). Comparison of neural networks for binary spatial classification of rice field by studying temporal pattern using dual polarimetric SAR measurements. Journal of the Indian Society of Remote Sensing, 1-19. https://doi.org/10.1007/s12524-024-02025-7
-
Hong, S. Y., Park, C. W., Jeon, Y. A., Shin, S., Lee, K. D., Yu, J. H., & Jung, H. J. (2024). History, status, and prospects of remote sensing in agriculture in Republic of Korea. Korean Journal of Remote Sensing, 40(5), 769-781. https://doi.org/10.7780/kjrs.2024.40.5.2.7
-
Jodhani, K. H., Gupta, N., Parmar, A. D., Bhavsar, J. D., Patel, D., Singh, S. K., Mishra, U., & Omar, G. J. (2024). Unveiling seasonal fluctuations in air quality using google earth engine: a case study for Gujarat, India. Topics in Catalysis, 67(15), 961-982. https://doi.org/10.1007/s11244-024-01957-1
-
Jodhani, K. H., Patel, D., Madhavan, N., Gupta, N., Singh, S. K., & Pandey, M. (2025). ML-based land use and land cover classification: Assessing performance and predicting future changes. Journal of Hydrologic Engineering, 30(4), 05025011. https://doi.org/10.1061/JHYEFF.HEENG-641
-
Cohen, W. B., Yang, Z., & Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—tools for calibration and validation. Remote Sensing of Environment, 114(12), 2911-2924. https://doi.org/10.1016/j.rse.2010.07.010
-
Lemoine G., & Léo, O. (2015). Crop mapping applications at scale: Using google earth engine to enable global crop area and status monitoring using free and open data sources, Proceedings Book of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy,1496-1499, https://doi.org/10.1109/IGARSS.2015.7326063
-
Li, K., Brisco, B., Yun, S., & Touzi, R. (2012). Polarimetric decomposition with RADARSAT-2 for rice mapping and monitoring. Canadian Journal of Remote Sensing, 38(2), 169-179. https://doi.org/10.5589/m12-024
-
Lin, S., Qi, Z., Li, X., Zhang, H., Lv, Q., & Huang, D. (2024). A phenological-knowledge-independent method for automatic paddy rice mapping with time series of polarimetric SAR images. ISPRS Journal of Photogrammetry and Remote Sensing, 218, 628-644. https://doi.org/10.1016/j.isprsjprs.2024.09.035
-
Liu, X., Zhai, H., Shen, Y., Lou, B., Jiang, C., Li, T., Hussain, S. B., & Shen, G. (2020). Large-scale crop mapping from multisource remote sensing images in google earth engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 414-427. https://doi.org/10.1109/JSTARS.2019.2963539
-
Magidi, J., Nhamo, L., Mpandeli, S., & Mabhaudhi, T. (2021). Application of the random forest classifier to map irrigated areas using google earth engine. Remote Sensing, 13(5), 876. https://doi.org/10.3390/rs13050876
-
McCloy, K. R., Smith, F. R., & Robinson, M. R. (1987). Monitoring rice areas using Landsat MSS data. International Journal of Remote Sensing, 8(5), 741-749. https://doi.org/10.1080/01431168708948685
-
Meshram, P., Rawat, K. S., & Tripathi, V. K. (2024a). Sentinel-1A data analysis for rice classification utilizing random forests and support Vector Machine. Environment and Ecology, 42(4C), 2037–2043. https://doi.org/10.60151/envec/hyxu4637
-
Meshram, P. K., Rawat, K. S., Singh. G. (2024b). Kharif rice crop acreage and yield estimation using Microwave & Optical remote sensing time series satellite data: A case study of the eastern region of Maharashtra. Acta Scientiarum Polonorum. http://dx.doi.org/10.15576/ASP.FC/191716
-
Meshram, P. K, Rawat, Kumar, S., & Singh, S. K. (2023). Crop-type classification using Sentinel-2A and in situ data: case study of Shri Dungargarh Taluk of Rajasthan, India. Springer, Proceedings in Smart Technologies for Energy, Environment & Sustainable Development [ICSTEESD 2020], GH Raisoni College of Engineering, Nagpur, India. https://doi.org/10.1007/978-981-16-6879-1_18
-
Meshram, P. K., & Rawat, K.S. (2023). Detection of paddy fields in the Eastern region of Maharashtra during the Kharif season using Temporal Sentinel-1A SAR data and Geographic Information System (GIS). Proceedings Book of InCACCT-2023. Gharuan, India, 539-542. https://doi.org/10.1109/InCACCT57535.2023
-
Monfreda, C., Ramankutty, N., & Foley, J. A. (2008). Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global biogeochemical cycles, 22(1). https://doi.org/10.1029/2007GB002947
-
Mutanga, O., & Kumar, L. (2019). Google earth engine applications. Remote sensing, 11(5), 591. https://doi.org/10.3390/rs11050591
-
Nguyen, T. T. H., De Bie, C. A. J. M., Ali, A., Smaling, E. M. A., & Chu, T. H. (2012). Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through hyper-temporal SPOT NDVI image analysis. International journal of remote sensing, 33(2), 415-434. https://doi.org/10.1080/01431161.2010.532826
-
Oguro, Y., Suga, Y., Takeuchi, S., Ogawa, M., Konishi, T., & Tsuchiya, K. (2001). Comparison of SAR and optical sensor data for monitoring of rice plant around Hiroshima. Advances in Space Research, 28(1), 195-200. https://doi.org/10.1016/S0273-1177(01)00345-3
-
Pan, X. Z., Uchida, S., Liang, Y., Hirano, A., & Sun, B. (2010). Discriminating different landuse types by using multitemporal NDXI in a rice planting area. International Journal of Remote Sensing, 31(3), 585-596. https://doi.org/10.1080/01431160902894442
-
Park, S., Im, J., Park, S., Yoo, C., Han, H., & Rhee, J. (2018). Classification and mapping of paddy rice by combining Landsat and SAR time series data. Remote Sensing, 10(3), 447. https://doi.org/10.3390/rs10030447
-
Pittman, K., Hansen, M. C., Becker-Reshef, I., Potapov, P. V., & Justice, C. O. (2010). Estimating global cropland extent with multi-year MODIS data. Remote Sensing, 2(7), 1844-1863. https://doi.org/10.3390/rs2071844
-
Qiu, B., Li, W., Tang, Z., Chen, C., & Qi, W. (2015). Mapping paddy rice areas based on vegetation phenology and surface moisture conditions. Ecological Indicators, 56, 79-86. https://doi.org/10.1016/j.ecolind.2015.03.039
-
Rao, P. N., & Rao, V. R. (1987). Rice crop identification and area estimation using remotely-sensed data from Indian cropping patterns. International Journal of Remote Sensing, 8(4), 639-650. https://doi.org/10.1080/01431168708948670
-
Sakamoto, T., Van Phung, C., Kotera, A., Nguyen, K. D., & Yokozawa, M. (2009). Analysis of rapid expansion of inland aquaculture and triple rice-cropping areas in a coastal area of the Vietnamese Mekong Delta using MODIS time-series imagery. Landscape and Urban Planning, 92(1), 34-46. https://doi.org/10.1016/j.landurbplan.2009.02.002
-
Schubert, A., Small, D., Miranda, N., Geudtner, D., & Meier, E., (2015). Sentinel-1A Product Geolocation Accuracy: Commissioning Phase Results. Remote sensing. 7, 9431-9449. https://doi.org/10.3390/rs70709431
-
Sun, H. S., Huang, J. F., Huete, A. R., Peng, D. L., & Zhang, F. (2009). Mapping paddy rice with multi-date moderate-resolution imaging spectroradiometer (MODIS) data in China. Journal of Zhejiang University-SCIENCE A, 10(10), 1509-1522. https://doi.org/10.1631/jzus.A0820536
-
Sun, L., Yang, T., Lou, Y., Shi, Q., & Zhang, L. (2024). Paddy rice mapping based on phenology matching and cultivation pattern analysis combining multi-source data in Guangdong, China. Journal of Remote Sensing, 4, 0152. https://doi.org/10.34133/remotesensing.0152
-
Tiwari, M., Shukla, S., Rawat, K. S., Mishra, V. N., Singh, S. K., & Shukla, K. (2025). High-resolution waterlogging mapping along Ghazipur Drain in Delhi: A UAV-based bathymetric analysis approach. Nature Environment and Pollution Technology, 24(4). https://doi.org/10.46488/NEPT.2025.v24i04.B4316
-
Torbick, N., Salas, W. A., Hagen, S., & Xiao, X. (2010). Monitoring rice agriculture in the Sacramento Valley, USA with multitemporal PALSAR and MODIS imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(2), 451-457. https://doi.org/10.1109/JSTARS.2010.2091493
-
Torre, D. M. G., Gao, J., & Macinnis Ng, C. (2021). Remote sensing-based estimation of rice yields using various models: A critical review. Geo-Spatial Information Science, 24(4), 580-603. https://doi.org/10.1080/10095020.2021.1936656
-
Wang, X., Liu, Z., & Chen, H. (2022). Investigating flood impact on crop production under a comprehensive and spatially explicit risk evaluation framework. Agriculture, 12(4), 484. https://doi.org/10.3390/agriculture12040484
-
Xiao, X., Boles, S., Liu, J., Zhuang, D., Frolking, S., Li, C., Salas, W., & Moore III, B. (2005). Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote sensing of environment, 95(4), 480-492. https://doi.org/10.1016/j.rse.2004.12.009
-
Yang, J., Hu, Q., Li, W., Song, Q., Cai, Z., Zhang, X., & Wu, W. (2024). An automated sample generation method by integrating phenology domain optical-SAR features in rice cropping pattern mapping. Remote Sensing of Environment, 314, 114387. https://doi.org/10.1016/j.rse.2024.114387
-
Yang, S., Shen, S., Li, B., Le Toan, T., & He, W. (2008). Rice mapping and monitoring using ENVISAT ASAR data. IEEE Geoscience and Remote Sensing Letters, 5(1), 108-112. https://doi.org/10.1109/LGRS.2007.912089
-
Yaotong, C., Hui, L., & Meng, Z. (2019). Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data. Advances in Space Research 64, 2233-2244. https://doi.org/10.1016/j.asr.2019.08.042
-
Yeom, J. M., & Kim, H. O. (2015). Comparison of NDVIs from GOCI and MODIS data towards improved assessment of crop temporal dynamics in the case of paddy rice. Remote Sensing, 7(9), 11326-11343. https://doi.org/10.3390/rs70911326
-
Zhang, H., He, B., & Xing, J. (2022). Mapping paddy rice in complex landscapes with Landsat time series data and superpixel-based deep learning method. Remote Sensing, 14(15), 3721. https://doi.org/10.3390/rs14153721
-
Zhao, R., Li, Y., & Ma, M. (2021). Mapping paddy rice with satellite remote sensing: A review. Sustainability, 13(2), 503. https://doi.org/10.3390/su13020503