COEFFICIENT BOUNDS AND FEKETE-SZEGÖ FUNCTIONAL PROBLEM FOR A NEW SUBCLASS OF M-FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS
Year 2025,
Volume: 15 Issue: 12, 2732 - 2741, 06.12.2025
Ayyub Gorganli Davaji
Ahmad Motamednezhad
,
Safa Salehian
Abstract
This paper introduces a novel subclass of $m$-fold symmetric bi-univalent functions denoted as $\mathcal{S}_{\Sigma_m}^{h.p}$. Precise coefficient estimates for terms $|a_{m+1}| , |a_{2m+1}|$ and the Fekete-Szegö functional are derived for functions belonging to this subclass. The results presented in this paper would generalize and improve some recent works of several earlier authors.
Thanks
The authors sincerely thank the referees for their valuable comments and suggestions.
References
-
Aldawish, I., Swamy, S. R., Frasin, B. A., (2022), A Special family of m-fold symmetric bi-univalent functions satisfying subordination condition, Fractal Fract., 6(5), pp. 1-13.
-
Brannan, D. A., Clunie(Eds.), J. G., (1980), Aspects of contemporary complex analysis, Academic Press, London.
-
Brannan, D. A., Taha, T. S., (1986), On Some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., 31(2), pp. 70-77.
-
Dubey, R. S., Shekhawat, N., Vijaywargiya, P., Modi, K., (2023), Certain subclass of m- fold symmetric bi-univalent functions' bounds for initial coefficients, Palest. J. Math., 12(1), pp. 968-975.
-
Jadhav, S. D., Patil, A. B., Wani, I. A., (2024), Initial Taylor-Maclurin coefficient bounds and the Fekete-Szeg$\ddot{o}$ problems for subclasses of m-fold symmetric analytic bi-univalent functions, TWMS. J. App. and Eng. Math., 14(1), pp. 185-196.
-
Motamednezhad, A., Salehian, S., Magesh, N., (2022), Coefficient estimates for subclass of m-fold Symmetric Bi-univalent Functions, Kragujevac J. Math., 46(3), pp. 395-406.
-
Motamednezhad, A., Salehian, S., Magesh, N., (2021), The Fekete-Szegö problems for a subclass of m-fold symmetric bi-univalent functions,TWMS. J. App. and Eng. Math., 11(2), pp. 514-523.
-
Koepf, W., (1989), Coefficients of symmetric functions of bounded boundary rotation, Proc. Amer. Math. Soc., 105(2), pp. 324-329.
-
Pommerenke, Ch., (1975), Univalent Functions, Vandenhoeck and Ruprecht, Gottingen.
-
Salehian, S., Motamednezhad, A., Magesh, N., (2023), Coefficient estimates for a general subclass of m-fold symmetric bi-univalent functions by using Faber polynomials, Iran. J. Math. Sci. Inform., 8(1), pp. 97-108.
-
Seker, B., Taymur, I., (2021), On subclasses of m-fold symmetric bi-univalent functions, TWMS. J. App. and Eng. Math., 11(2), pp. 598-604.
-
Srivastava, H. M., Gaboury, S., Ghanim, F., (2016), Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B, 36(3), pp. 863-871.
-
Srivastava, H. M., Mishra, A. K., Gochhayat, P., (2010), Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(10), pp. 1188-1192.
-
Srivastava, H. M., Sumer Eker, S., Rosihan Ali, M., (2015), Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(8), pp. 1839-1845.
-
Srivastava, H. M., Sivasubramanian, S., Sivakumar, R., (2014), Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., 7(2), pp. 1-10.
-
Srivastava, H. M., Zireh, A., Hajiparvaneh, S., (2018), Coefficient estimates for some subclasses of $m$-fold symmetric bi-univalent functions, Filomat, 32(9), pp. 3143-3153.
-
Tang, H., Srivastava, H. M., Sivasubramanian, S., Gurusamy, P., (2016), The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Inequal, 10(4), pp. 1063-1092.
-
Tu, Z., Xiong, L., (2018), Coefficient problems for united starlike and convex classes of m-fold symmetric bi-univalent functions, J. Math. Inequal, 12(4), pp. 921-932.
-
Wanas, A. K., Raadhi, H. K., (2022), Maclaurin Coefficient Estimates for a New Subclasses of m-fold Symmetric Bi-Univalent Functions, Earthline J. Math. Sci, 11(2), pp. 199-210.
-
Zireh, A., Analouei Adegani, E., Bulut, S., (2016), Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, Bull. Belg. Math. Soc. Simon Stevin., 23(4), pp. 487-504.