Research Article
BibTex RIS Cite

COEFFICIENT BOUNDS AND FEKETE-SZEGÖ FUNCTIONAL PROBLEM FOR A NEW SUBCLASS OF M-FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS

Year 2025, Volume: 15 Issue: 12, 2732 - 2741, 06.12.2025

Abstract

This paper introduces a novel subclass of $m$-fold symmetric bi-univalent functions denoted as $\mathcal{S}_{\Sigma_m}^{h.p}$. Precise coefficient estimates for terms $|a_{m+1}| , |a_{2m+1}|$ and the Fekete-Szegö functional are derived for functions belonging to this subclass. The results presented in this paper would generalize and improve some recent works of several earlier authors.

Thanks

The authors sincerely thank the referees for their valuable comments and suggestions.

References

  • Aldawish, I., Swamy, S. R., Frasin, B. A., (2022), A Special family of m-fold symmetric bi-univalent functions satisfying subordination condition, Fractal Fract., 6(5), pp. 1-13.
  • Brannan, D. A., Clunie(Eds.), J. G., (1980), Aspects of contemporary complex analysis, Academic Press, London.
  • Brannan, D. A., Taha, T. S., (1986), On Some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., 31(2), pp. 70-77.
  • Dubey, R. S., Shekhawat, N., Vijaywargiya, P., Modi, K., (2023), Certain subclass of m- fold symmetric bi-univalent functions' bounds for initial coefficients, Palest. J. Math., 12(1), pp. 968-975.
  • Jadhav, S. D., Patil, A. B., Wani, I. A., (2024), Initial Taylor-Maclurin coefficient bounds and the Fekete-Szeg$\ddot{o}$ problems for subclasses of m-fold symmetric analytic bi-univalent functions, TWMS. J. App. and Eng. Math., 14(1), pp. 185-196.
  • Motamednezhad, A., Salehian, S., Magesh, N., (2022), Coefficient estimates for subclass of m-fold Symmetric Bi-univalent Functions, Kragujevac J. Math., 46(3), pp. 395-406.
  • Motamednezhad, A., Salehian, S., Magesh, N., (2021), The Fekete-Szegö problems for a subclass of m-fold symmetric bi-univalent functions,TWMS. J. App. and Eng. Math., 11(2), pp. 514-523.
  • Koepf, W., (1989), Coefficients of symmetric functions of bounded boundary rotation, Proc. Amer. Math. Soc., 105(2), pp. 324-329.
  • Pommerenke, Ch., (1975), Univalent Functions, Vandenhoeck and Ruprecht, Gottingen.
  • Salehian, S., Motamednezhad, A., Magesh, N., (2023), Coefficient estimates for a general subclass of m-fold symmetric bi-univalent functions by using Faber polynomials, Iran. J. Math. Sci. Inform., 8(1), pp. 97-108.
  • Seker, B., Taymur, I., (2021), On subclasses of m-fold symmetric bi-univalent functions, TWMS. J. App. and Eng. Math., 11(2), pp. 598-604.
  • Srivastava, H. M., Gaboury, S., Ghanim, F., (2016), Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B, 36(3), pp. 863-871.
  • Srivastava, H. M., Mishra, A. K., Gochhayat, P., (2010), Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(10), pp. 1188-1192.
  • Srivastava, H. M., Sumer Eker, S., Rosihan Ali, M., (2015), Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(8), pp. 1839-1845.
  • Srivastava, H. M., Sivasubramanian, S., Sivakumar, R., (2014), Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., 7(2), pp. 1-10.
  • Srivastava, H. M., Zireh, A., Hajiparvaneh, S., (2018), Coefficient estimates for some subclasses of $m$-fold symmetric bi-univalent functions, Filomat, 32(9), pp. 3143-3153.
  • Tang, H., Srivastava, H. M., Sivasubramanian, S., Gurusamy, P., (2016), The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions, J. Math. Inequal, 10(4), pp. 1063-1092.
  • Tu, Z., Xiong, L., (2018), Coefficient problems for united starlike and convex classes of m-fold symmetric bi-univalent functions, J. Math. Inequal, 12(4), pp. 921-932.
  • Wanas, A. K., Raadhi, H. K., (2022), Maclaurin Coefficient Estimates for a New Subclasses of m-fold Symmetric Bi-Univalent Functions, Earthline J. Math. Sci, 11(2), pp. 199-210.
  • Zireh, A., Analouei Adegani, E., Bulut, S., (2016), Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination, Bull. Belg. Math. Soc. Simon Stevin., 23(4), pp. 487-504.
There are 20 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Research Article
Authors

Ayyub Gorganli Davaji This is me 0009-0000-6842-1897

Ahmad Motamednezhad 0000-0001-6844-129X

Safa Salehian 0000-0003-2562-7531

Submission Date December 18, 2024
Acceptance Date April 5, 2025
Publication Date December 6, 2025
Published in Issue Year 2025 Volume: 15 Issue: 12

Cite