ALGEBRAIC PROPERTIES OF KERNEL SYMMETRIC INTUITIONISTIC FUZZY MATRICES
Year 2026,
Volume: 16 Issue: 1, 32 - 47, 08.01.2026
S. Chanthirababu
M. Anandhkumar
A Venkatesh
Abstract
The characterization of interval valued secondary k- kernel symmetric Intuitionistic fuzzy matrices have been examined in this study. It is discussed how interval valued s-k kernel symmetric, s-kernel symmetric, interval valued k- kernel symmetric, and interval valued kernel symmetric matrices relate to one another. We establish the necessary and sufficient criteria for interval valued s-k kernel symmetric Intuitionistic fuzzy matrices.
Thanks
I render my heartful thanks to Prof. Dr. (Mrs.) AR. Meenakshi, Former AICTE - Emeritus Professor of Mathematics, Annamalai University, for her expert guidance and Dr. D. Jayashree, Assistant Professor, Department of Mathematics. Government Arts and Science College, Hosur.
References
-
Atanassov, K., (1986), Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1), pp. 87-96.
-
Atanassov, K., (1994), Operations over interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 64(2), pp. 159-174.
-
Hashimoto, H., (1983), Canonical form of a transitive matrix, Fuzzy Sets and Systems, 11(3), 157-162.
-
Kim K. H., and Roush F. W., (1980), Generalised fuzzy matrices, Fuzzy Sets and Systems, 4(3), 293-315.
-
Pal, M., Khanand S. K., Shyamal A. K., Intuitionisticfuzzymatrices, (2002), Notes on Intuitionistic Fuzzy Sets, 8(2), pp.51-62.
-
Lee, A., (1976), Secondary Symmetric, Secondary Skew Symmetric, Secondary Orthogonal Matrices, Period Math, Hungary, 7(2), pp. 63-76.
-
Hill R. D., and Waters S. R., (1992), On k-Real and k-Hermitian matrices, Linear Algebra and its Applications, 169(4), pp. 17-29.
-
Meenakshi A. R., (2008), Fuzzy Matrix: Theory and Applications, MJP Publishers, Chennai.
-
Meenakshi A. R., and Krishanmoorthy S., (2009),On Secondary k-Hermitian matrices, Journal of Modern Science, 1, pp. 70-78.
-
Shyamal A. K., and Pal, M., (2006), Interval valued Fuzzy matrices, Journal of Fuzzy Mathematics, 14(3) , pp. 582-592.
-
Meenakshi A. R., and Kalliraja, M., (2010), Regular Interval valued Fuzzy matrices, Advance in Fuzzy Mathematics, 5(1), pp. 7-15.
-
Pal, M., and Khan, S., (2014), Interval-Valued Intuitionistic Fuzzy Matrices, NIFS 11(1), pp. 16-27.
-
Anandhkumar, M., Punithavalli, R., Jegan, R., and Broumi, S., (2024), Interval Valued Secondary k-Range Symmetric Neutrosophic Fuzzy Matrices, Neutrosophic Sets and Systems, 61(1), pp. 177-195.
-
Punithavalli, G., Anandhkumar, M., (2024), Reverse Sharp and Left-T Right-T Partial Ordering On Intuitionistic Fuzzy Matrices, TWMS J. App. and Eng. Math. 14(4), pp. 1772-1783.
-
Anandhkumar, M., Kanimozhi, B., Chithra, S. M., Kamalakannan, V., (2023), Reverse Tilde (T) and Minus Partial Ordering on Intuitionistic fuzzy matrices, Mathematical Modelling of Engineering Problems, 10(4), pp. 1427–1432.
-
Punithavalli, G., Anandhkumar, M., (2024), Kernel and K-Kernel Symmetric Intuitionistic Fuzzy Matrices, TWMS J. App. and Eng. Math, 14(3), pp. 1231-1240.
-
Anandhkumar, V., Kanimozhi, B., Chithra S. M. ., Kamalakannan,V., (2023), Reverse Tilde (T) and Minus Partial Ordering on Intuitionistic fuzzy matrices, Mathematical Modelling of Engineering Problems, 10(4), pp. 1427–1432.
-
Radhika, K., Harikrishnan, T., Ambrose Prabhu, V., Tharaniya, P., John Peter, M., Anandhkumar, M., (2025), On Schur Complement in k-Kernel Symmetric Block Quadri Partitioned Neutrosophic Fuzzy Matrices, Neutrosophic Sets and Systems, 78(1), pp. 292-322.
-
Radhika, K., Senthil, S., Kavitha, N., Jegan, R., Anandhkumar, M., Bobin, A., (2025), Interval Valued Secondary k-Range Symmetric Quadri Partitioned Neutrosophic Fuzzy Matrices with Decision Making, Neutrosophic Sets and Systems, 78(1), pp. 506-539.
-
Prathab, H., Ramalingam, N., Janaki, E., Bobin, A., Kamalakannan, V., and Anandhkumar, M., (2024), Interval Valued Secondary k-Range Symmetric Fuzzy Matrices with Generalized Inverses, IAENG International Journal of Computer Science, 51(12), pp. 2051-2066.