GENERALIZED FRACTIONAL HEAT EQUATION IN EXTENDED COLOMBEAU ALGEBRAS
Year 2026,
Volume: 16 Issue: 1, 16 - 31, 08.01.2026
Abdelmjid Benmerrous
Lalla Saadia Chadli
M'hamed Elomari
Abstract
In this paper, we use the Colombeau generalized algebra to prove the existence and uniqueness of the solution of fractional heat equation with singular potentials (i.e., singular distributions). The concept of a generalized fractional semigroup was used to prove the result.
References
-
Baras, P., Goldstein, J. A., (1984), The heat equation with a singular potential, Trans. Amer. Math. Soc. 284, 121–139.
-
Benmerrous, A., Bourhim, F. E., El Mfadel, A., Elomari, M. H., (2024), Solving a time-fractional semilinear hyperbolic equations by Fourier truncation with boundary conditions. Chaos, Solitons and Fractals, 185, 115086.
-
Benmerrous, A., Chadli, L. S., Moujahid, A., Elomari, M., & Melliani, S., (2024), Conformable cosine family and nonlinear fractional differential equations. Filomat, 38(9), 3193-3206.
-
Benmerrous, A., Chadli, L. S., Moujahid, A., Elomari, M. H., and Melliani, S., (2022), Generalized Cosine Family, Journal of Elliptic and Parabolic Equations, 8(1), pp. 367-381.
-
Benmerrous, A., Chadli, L. s., Moujahid, A., Elomari, M. H., and Melliani, S., (2023), Generalized Fractional Cosine Family, International Journal of Difference Equations (IJDE), 18(1), pp. 11-34.
-
Benmerrous, A., Chadli, L. S., Moujahid, A., Elomari, M. H., and Melliani, S., (2024), Generalized solutions for time ψ-fractional evolution equations, Boletim da Sociedade Paranaense de Matematica,
42, 1-14.
-
Benmerrous, A., Chadli, L. S., Moujahid, A., and Melliani, S., (2023), Generalized solutions for time ψ-fractional heat equation., Filomat, 37(27), 9327-9337.
-
Benmerrous, A., Chadli, L. S., Moujahid, A., and Melliani, S., (2024), Generalized solutions for fractional Schr¨odinger equation., TWMS Journal of Applied and Engineering Mathematics.
-
Benmerrous, A., Chadli, L. S., Moujahid, A., M’hamed, E., Melliani, S., (2022), Generalized solution of Schrödinger equation with singular potential and initial data, Int. J. Nonlinear Anal. Appl, 13(1), pp. 3093-3101.
-
Benmerrous, A., Chadli, L. S., Moujahid, A., Elomari, M. H., and Melliani, S., (2024), On a fractional Cauchy problem with singular initial data, Nonautonomous Dynamical Systems, 11(1), 20240004.
-
Benmerrous, A., Chadli, L. S., Moujahid, A., Elomari, M. H., and Melliani, S., (2022, October), Solution of Schr¨odinger type Problem in Extended Colombeau Algebras, In 2022 8th International Conference on Optimization and Applications (ICOA), pp. 1-5.
-
Benmerrous, A., Chadli, L. S., Moujahid, A., Elomari, M. H., and Melliani, S., (2023), Solution of nonhomogeneous wave equation in extended Colombeau algebras, International Journal of Difference Equations (IJDE), 18(1), 107-118.
-
Benmerrous, A., Elomari, M. H., and El mfadel, A., (2026). Solving the Fractional Schr¨odinger Equation with Singular Potential by Means of the Fourier Transform, Kragujevac Journal of Mathematics, 50(6), 921-929.
-
Bourgain, J., (1999), Global solutions of nonlinear Schr¨odinger equations, AMS, Colloquium Publications, vol.46.
-
Chadli, L. S., Benmerrous, A., Moujahid, A., Elomari, M. H., and Melliani, S., (2022), Generalized Solution of Transport Equation, In Recent Advances in Fuzzy Sets Theory, Fractional Calculus, Dynamic Systems and Optimization, pp. 101-111.
-
Colombeau, J. F., (1985), Elementary Introduction in New Generalized Functions, North Holland, Amsterdam.
-
Colombeau, J. F., (1984), New Generalized Function and Multiplication of Distribution, North Holland, Amsterdam / New York / Oxford.
-
de Almeida, M. F., Ferreira, L. C. F., Precioso, J. C., (2017), On the heat equation with nonlinearity and singular anisotropic potential on the boundary, Potential Anal., 46, 589-608.
-
Ferreira, L. C. F., Mesquita, C. A .A .S., (2015), An approach without using hardy inequality for the linear heat equation with singular potential, Commun. Contemp. Math., 1550041.
-
Friedlander, F. G., Joshi, M., (1998), Introduction to the Theory of Distributions, Cambridge University Press.
-
Nakamura, S., (1993), Lectures on Schr¨odinger operators, Lectures given at the University of Tokyo, October 1992, February.
-
Oberguggenberger, M., (2001), Generalized functions in nonlinear models a survey, Nonlinear Analysis, 47, 5049-5040.
-
Rajterc, C. D., and Stojanovic, M., (2011), Convolution-type derivatives and transforms of Colombeau generalized stochastic processes, Integral Transforms Spec. Funct., 22(45), 319-326.
-
Reed, M., Simon, B., (1975), Methods of Modern Mathematical Physics, II: Fourier analysis, self-adjointness, Academic Press, NewYork.
-
Schwartz, L., (1954), Sur l’impossibilit`e de la multiplication des distributions, C. R. Acad. Sci., Paris, 239, 847–848.
-
Stojanovic, M., (2009), a Extension of Colombeau algebra to derivatives of arbitrary order Dα ; α∈ 2R+ ∪ {0} : Application to ODEs and PDEs with entire and fractional derivatives, Nonlinear Analysis, 71, 5458-5475.
Stojanovic, M., (2012), Fondation of the fractional calculus in generalized function algebras, Analysis and Applications, Vol. 10, No., 4, 439-467.
-
Stojanovic, M., (2006), Nonlinear Schrödinger equation with singular potential and initial data, Nonlinear Analysis, 64, 1460-1474.
-
Vazquez, J. L., Zuazua, E., Functional ,J., (2000), The hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, Analysis, 173, 103–153.
-
Zhi, C. L., Fisher, B., (1989), Several products of distributions on Rm., Proc R Soc Lond, A426:425–439.