Research Article
BibTex RIS Cite

ERROR QUANTIFICATION FOR APPROXIMATION IN GENERALIZED ZYGMUND CLASSES USING THREE-HARMONIC POISSON INTEGRALS

Year 2026, Volume: 16 Issue: 2, 188 - 203, 03.02.2026

Abstract

This paper examines the error in approximation within generalized Zygmund classes using three-harmonic Poisson integrals. The error is measured using two moduli of continuity of order two, within the relevant norm, providing a clear understanding of how the approximation works.

References

  • Borsuk, B. and Khanin A., (2021), On approximation of functions from Zygmund classes by biharmonic Poisson integrals, Intern. Sci. Tech. J., Probl. of Cont. and Inform., 66(4), pp. 81–91.
  • P. Chandra, (1982), On the generalised Fej´er means in the metric of H¨older space, Math. Nachr. 109, 39–45.
  • Chandra, P., (1990), Degree of approximation of functions in the H¨older metric by Borel’s means, J. Math. Anal. Appl., 149(1), 236–248.
  • Chandra, P., (2002), Trigonometric approximation of functions in Lp-norm. J. Math. Anal. Appl. 275 (1), 13–26.
  • G. Das, T. Ghosh and B. K. Ray, (1996), Degree of approximation of functions by their Fourier series in the generalized Hölder metric, Proc. Indian Acad. Sci. Math. Sci. 106(2), 139–153.
  • Değer U., (2016), A Note on the degree of approximation by matrix means in the generalized Hölder metric, Ukrainian Math. J. 68(4), 545–556.
  • Hardy, G. H. and Littlewood, J. E., P´olya G., (1967), Inequalities, Cambridge University Press, London.
  • Hembars’ka, S.B., (2018), On Boundary Values of Three-Harmonic Poisson Integral on the Boundary of a Unit Disk, Ukr. Math. J. 70(7), 1012–1021.
  • Kal’chuk, I. V., Kravets, V. I., and Hrabova, U. Z., (2020), Approximation of the classes $W^r_{\beta} H^{\alpha}$ by three-harmonic Poisson integrals, J. Math. Sci. (N.Y.) 246(1), 39–50.
  • Shah K. Abdeljawad T., Ahmad I., (2024), On non-Linear Fractional Order Coupled Pantograph Differential Equations under Nonlocal Boundary conditions, TWMS J. Pure Appl. Math., V.15, N.1, pp.65-78 DOI:10.30546/2219-1259.15.1.2024.1786.
  • Kim J., (2021), Degree of approximation in the space $H_{p}^{\omega}$ by the even-type delayed arithmetic mean of Fourier series, Georgian Math. J., vol. 28(5), pp. 747–753.
  • Krasniqi, Xh. Z., (2021), Applications of the deferred de La Vall´ee Poussin means of Fourier series, Asian-Eur. J. Math., 14(10), Paper No. 2150179, 13 pp.
  • Krasniqi, Xh. Z., (2024), On approximation by Abel-Poisson and conjugate Abel-Poisson means in Höolder metric, Afr. Mat. 35(2), Paper No. 51, 13 pp.
  • Krasniqi, Xh. Z., (2024), On approximation of bivariate functions by Abel-Poisson and conjugate Abel-Poisson means, J. Anal. 32(3), 1591–1617.
  • Xh. Z. Krasniqi, The degree of approximation for functions in the generalized Hölder class via the biharmonic Poisson integrals, J. Math. Sci. (N.Y.) (in press).
  • Lal, S.,and Shireen, (2013), Best approximation of function of generalized Zygmund class matrix-Euler summability means of Fourier series. Bull. Math. Anal. Appl. 5(4), 1-13.
  • Leindler, L., (1981), Strong approximation and generalized Zygmund class, Acta Sci. Math., (Szeged) 43(3-4), 301–309.
  • Leindler, L., (2005), Trigonometric approximation in Lp-norm, J. Math. Anal. Appl., 302(1), 129–136.
  • Leindler, L., (2009), A relaxed estimate of the degree of approximation by Fourier series in generalized Hölder metric, Anal. Math., 35(1), 51–60.
  • Lenski, W, Szal, B., Mohapatra, R. N., (2024), Seminormed approximation of functions by operators based on their Fourier series. Bull. Sci. Math. 193, Paper No. 103443, 16 pp.
  • Moricz, F. and Nemeth, J., (2007), Generalized Zygmund classes of functions and strong approximation by Fourier series, Acta Sci. Math., (Szeged) 73(3-4), 637–647.
  • Moricz, F., (2010), Enlarged Lipschitz and Zygmund classes of functions and Fourier transforms, East J. Approx., 16(3), 259–271.
  • Nayak, L., Das, G., and Ray, B. K., (2014), An estimate of the rate of convergence of Fourier series in the generalized Hölder metric by deferred Ces`aro mean, J. Math. Anal. Appl. 420(1), 563–575.
  • Nayak, L., Das, G., Ray, B. K., (2014), An estimate of the rate of convergence of the Fourier series in the generalized Hölder metric by delayed arithmetic mean. Int. J. Anal., Art. ID 171675, 7 pp.
  • Nigam, H. K. and Hadish Md., (2020), On approximation of function in generalized Zygmund class using $C^{\eta}T$ operator, J. Math. Inequal. 14(1), 273–289.
  • Prössdorf, (1975), S. Zur Konvergenz der Fourierreihen hölderstetiger Funktionen, (German) Math. Nachr. 69, 7–14.
  • Quade, E. S., (1937), Trigonometric approximation in the mean, Duke Math. J., 3(3), 529–543.
  • Singh, B. and Singh, U., (2023), On strong approximation in generalized H¨older and Zygmund spaces, Computer Sciences & Mathematics Forum 7(1), 1-6.
  • Singh, M. V.; Mittal, M. L.; Rhoades, B. E., (2017), Approximation of functions in the generalized Zygmund class using Hausdorff means, J. Inequal. Appl., Paper No. 101, 11 pp.
  • Stepanets, A. I., (2001), Uniform Approximations by Trigonometric Polynomials, Berlin, Boston: De Gruyter.
  • Tikhonov, A. N. and Samarskii, A. A., (1990), Equations of Mathematical Physics, New York: Dover Publications.
  • Zhihallo, K. M. and Kharkevych, Yu. I., (2001), On the approximation of functions in the H¨older class by triharmonic Poisson integrals, Ukrainian Math. J. 53(6), 1012–1018.
  • Zygmund, A., (2002), Trigonometric series, Cambridge Univ. Press, Cambridge, 3rd rev. ed.
  • Park C., Rezaei H. , Derakhshan M.H., (2025), An Effective Method for Solving the Multitime-Fractional Telegraph Equation of Distribbuted Order Based on the Fractional Order Gegenbauer Wavelet, Appl. Comput. Math., Vol.24, No.1, 2025, pp.16-37.,DOI: 10.30546/1683-6154.24.1.2025.16
There are 34 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables), Approximation Theory and Asymptotic Methods
Journal Section Research Article
Authors

Xhevat Krasniqi 0000-0002-5032-4623

Submission Date January 12, 2025
Acceptance Date July 7, 2025
Publication Date February 3, 2026
Published in Issue Year 2026 Volume: 16 Issue: 2

Cite