Research Article
BibTex RIS Cite

FRACTIONAL-ORDER MODELING OF ZIKA VIRUS TRANSMISSION: ANALYSIS AND NUMERICAL SIMULATIONS

Year 2026, Volume: 16 Issue: 2, 249 - 265, 03.02.2026

Abstract

This study presents a novel mathematical framework for modeling Zika virus transmission dynamics within human populations and between humans and mosquitoes, utilizing a fractional-order Caputo derivative. The study establishes the system's feasibility region, determines equilibrium points, and analyzes their stability. The existence and uniqueness of the solution are proven using fixed-point theory, and solutions are approximated via the fractional natural decomposition method. A key novelty of this study lies in the comparative analysis of fractional-order and integer-order models, highlighting how fractional derivatives provide greater modeling flexibility and better capture memory effects in disease progression. The numerical simulations demonstrate the significant influence of fractional derivatives on system behavior, illustrating differences in the rate of infection spread and disease persistence compared to integer-order models. This fractional calculus approach offers valuable insights into the complex dynamics of Zika virus transmission. Importantly, this study explores how fractional-order modeling can enhance existing control strategies against Zika virus outbreaks, providing a more refined framework for evaluating intervention measures and improving public health decision-making.

References

  • Plourde, A. R. and Bloch, E. M., (2016), A literature review of Zika virus. Emerging infectious diseases, 22(7), p.1185.
  • Song, B. H., Yun, S. I., Woolley, M. and Lee, Y.M., (2017), Zika virus: History, epidemiology, transmission, and clinical presentation. Journal of neuroimmunology, 308, pp.50-64.
  • Sharma, A. and Lal, S. K., (2017), Zika virus: transmission, detection, control, and prevention. Frontiers in microbiology, 8, p.110.
  • Manguin, S. and Boete, C., (2011), Global impact of mosquito biodiversity, human vector-borne diseases and environmental change. The importance of biological interactions in the study of biodiversity, pp.27-50.
  • Madzlan, F., Dom, N. C., Tiong, C. S. and Zakaria, N., (2016), Breeding characteristics of Aedes mosquitoes in dengue risk area. Procedia-Social and Behavioral Sciences, 234, pp.164-172.
  • Musso, D. and Gubler, D. J., (2015), Zika virus: following the path of dengue and chikungunya?.The Lancet, 386(9990), pp.243-244.
  • Yavuz, M. and Abdeljawad, T., (2020), Nonlinear regularized long-wave models with a new integral transformation applied to the fractional derivative with power and Mittag-Leffler kernel. Advances in Difference Equations, 2020(1), p.367.
  • Shah, K., Alqudah, M. A., Jarad, F. and Abdeljawad, T., (2020), Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo–Febrizio fractional order derivative. Chaos, Solitons & Fractals, 135, p.109754.
  • Bekiryazici, Z., Kesemen, T., Merdan, M. and Khaniyev, T., (2023), Modeling Disease Transmission Dynamics with Random Data and Heavy Tailed Random Effects: The Zika Case. TWMS Journal of Applied & Engineering Mathematics, 13(4). Elsaka, H. and Ahmed, E., (2016), A fractional order network model for ZIKA. BioRxiv, p.039917.
  • Rezapour, S., Mohammadi, H. and Jajarmi, A., (2020), A new mathematical model for Zika virus transmission. Advances in difference equations, 2020(1), pp.1-15.
  • Zhou, M. X., Kanth, A. R., Aruna, K., Raghavendar, K., Rezazadeh, H., Inc, M. and Aly, A. A., (2021), Numerical Solutions of Time Fractional Zakharov-Kuznetsov Equation via Natural Transform Decomposition Method with Nonsingular Kernel Derivatives. Journal of Function Spaces, 2021(1), p.9884027.
  • Alderremy, A. A., Aly, S., Fayyaz, R., Khan, A., Shah, R. and Wyal, N., (2022), The Analysis of Fractional-Order Nonlinear Systems of Third Order KdV and Burgers Equations via a Novel Transform. Complexity, 2022(1), p.4935809.
  • Sunthrayuth, P., Alyousef, H. A., El-Tantawy, S. A., Khan, A. and Wyal, N., (2022), Solving Fractional-Order Diffusion Equations in a Plasma and Fluids via a Novel Transform. Journal of Function Spaces, 2022(1), p.1899130.
  • Al-Sawalha, M. M., Ababneh, O. Y., Shah, R. and Nonlaopon, K., (2023), Numerical analysis of fractional-order Whitham-Broer-Kaup equations with non-singular kernel operators. AIMS Mathematics, 8(1), pp.2308-2336.
  • Shah K., Abdeljavad T., Ahmad I., (2024), On Non-linear Fractional Order Coupled Pantograph Differential Equations under Nonlocal Boundary Conditions, TWMS J. Pure Appl. Math., V.15, N.1, pp.65-78. DOI:10.30546/2219-1259.15.1.2024.1786
  • Veeresha, P., Prakasha, D. G. and Singh, J., (2020), Solution for fractional forced KdV equation using fractional natural decomposition method. Aims Math, 5(2), pp.798-810.
  • Ullah, M. Z., Alzahrani, A. K. and Baleanu, D., (2019), An efficient numerical technique for a new fractional tuberculosis model with nonsingular derivative operator. Journal of Taibah University for Science, 13(1), pp.1147-1157.
  • Gomez-Aguilar, J. F., Rosales-Garcia, J. J., Bernal-Alvarado, J. J., Coordova-Fraga, T. and Guzmaan-Cabrera, R., (2012), Fractional mechanical oscillators. Revista mexicana de fisica, 58(4), pp.348-352.
  • Begum, R., Tunç, O., Khan, H., Gulzar, H. and Khan, A., (2021), A fractional order Zika virus model with Mittag–Leffler kernel. Chaos, Solitons & Fractals, 146, p.110898.
  • Goswami, N. K., Srivastav, A. K., Ghosh, M. and Shanmukha, B., (2018), Mathematical modeling of zika virus disease with nonlinear incidence and optimal control. In Journal of Physics: Conference Series (Vol. 1000, p. 012114). IOP Publishing.
  • Suparit, P., Wiratsudakul, A. and Modchang, C., (2018), A mathematical model for Zika virus transmission dynamics with a time-dependent mosquito biting rate. Theoretical Biology and Medical Modelling, 15, pp.1-11.
  • Gonzaalez-Parra, G. and Benincasa, T., (2019), Mathematical modeling and numerical simulations of Zika in Colombia considering mutation. Mathematics and Computers in Simulation, 163, pp.1-18.
  • Agusto, F. B., Bewick, S. and Fagan, W. F., (2017), Mathematical model of Zika virus with vertical transmission. Infectious Disease Modelling, 2(2), pp.244-267.
  • Anderson, R. M., (1991), Discussion: the Kermack-McKendrick epidemic threshold theorem. Bulletin of mathematical biology, 53, pp.1-32.
  • Rodrigues, H. S., (2016), Application of SIR epidemiological model: new trends. arXiv preprint arXiv:1611.02565.
  • Biswas, S. K., Ghosh, U. and Sarkar, S., (2024), A mathematical model of Zika virus transmission with saturated incidence and optimal control: A case study of 2016 zika outbreak in Puerto Rico. International Journal of Modelling and Simulation, 44(3), pp.172-189.
  • Farman, M., Akg¨ul, A., Sultan, M., Riaz, S., Asif, H., Agarwal, P. and Hassani, M. K., (2024), Numerical study and dynamics analysis of diabetes mellitus with co-infection of COVID-19 virus by using fractal fractional operator. Scientific Reports, 14(1), p.16489.
  • Sharma, N., Singh, R., ul Rehman, A. and Agarwal, P., (2024), Approximate solutions of epidemic model of Zika virus. In Fractional Differential Equations (pp. 177-189). Academic Press.
  • Danbaba, U. A., Aloko, M. D. and Ayinde, A. M., (2024), Mathematical modeling of mosquito borne diseases with vertical transmissions as applied to Dengue. International Journal of Mathematical Sciences and Optimization: Theory and Applications, 10(3), pp.31-56.
  • Belgacem, F. B. M. and Silambarasan, R., (2012), Theory of natural transform. Math. Engg. Sci. Aeros, 3, pp.99-124.
  • Shah, K., Patel, H. C., Jain, S. and Agarwal, P., (2024), Application of modified homotopy analysis transform method to fractional modified Kawahara equation. In Recent Trends in Fractional Calculus and Its Applications (pp. 273-284). Academic Press.
  • Khan, Z. H. and Khan, W. A., (2008), N-transform properties and applications. Nust J. Eng. Sci, 1(1), pp.127-133.
  • Shah, K., Junaid, M. and Ali, N., (2015), Extraction of Laplace, Sumudu, Fourier and Mellin transform from the natural transform. J. Appl. Environ. Biol. Sci, 5(9), pp.108-115.
  • Hassani, H., Avazzadeh, Z., Agarwal, P., Mehrabi, S., Ebadi, M. J., Dahaghin, M.cS. and Naraghirad, E., (2023), A study on fractional tumor-immune interaction model related to lung cancer via generalized Laguerre polynomials. BMC medical research methodology, 23(1), p.189.
  • Lanlege, D. I., Fadugba, S. E., Ali, N., Ozioko, A. L., Alam, N., Ahmad, S., Jeeva, N. and Sayed-Ahmed, M. Z., (2025), Mathematical model of the social pathogen of HIV/AIDS stigma, Commun. Math. Biol. Neurosci., (2025), p. 6.
  • Dharmalingam, K. M., Jeeva, N., Ali, N., Al-Hamido, R. K., Fadugba, S. E., Malesela, K., Tolasa, F. T., El-Bahkiry, H. S. and Qousini, M., (2024), Mathematical analysis of Zika virus transmission: exploring semi-analytical solutions and effective controls. Commun. Math. Biol. Neurosci., (2024), p.112.
  • Jeeva, N., Dharmalingam, K. M., Ali, N., Sayed-Ahmed, M. Z., Radwan, R. M., El-Bahkiry, H. S., Fadugba, S. E., Oshinubi, K., Malesela, K., Adeniji, A. and Tolasa, F. T., (2024), Epidemiology simulation: numerical techniques for analyzing type 2 diabetes model and its prevention measures, Commun. Math. Biol. Neurosci., (2024), p. 117.
  • Omede, B. I., Bolaji, B., Peter, O. J., Ibrahim, A. A. and Oguntolu, F. A., 2024. Mathematical analysis on the vertical and horizontal transmission dynamics of HIV and Zika virus co-infection. Franklin Open, 6, p.100064.
  • J. Zhou, X. Wu, C. Chen, (2025), Investigating Various Intuitionistic Fuzzy Information Measures and Their Relationships, Appl. Comput. Math., Vol.24, No.4,, pp.579-607. DOI: 10.30546/1683-6154.24.4.2025.579.
There are 39 citations in total.

Details

Primary Language English
Subjects Ordinary Differential Equations, Difference Equations and Dynamical Systems, Biological Mathematics
Journal Section Research Article
Authors

Kunjan Shah 0000-0003-1269-0865

Jayashree Parmar This is me 0009-0000-7413-2178

Jaydev S. Patel This is me 0000-0001-6979-0272

Himanshu C. Patel This is me 0000-0001-7228-7256

Submission Date November 27, 2024
Acceptance Date February 28, 2025
Publication Date February 3, 2026
Published in Issue Year 2026 Volume: 16 Issue: 2

Cite