Research Article
BibTex RIS Cite

THE HYBRID FORM OF THE HYPERBOLIC HORADAM MATRIX FUNCTIONS

Year 2025, Volume: 15 Issue: 10, 2505 - 2518, 01.10.2025

Abstract

In the present paper, a special type of hybrid number is introduced whose components are the hyperbolic Horadam sine and cosine matrix functions. These hybrid numbers and their symmetrical forms are explored in detail, and their recursive relations as well as hyperbolic properties are investigated. The paper also includes the Cassini, Catalan, and De Moivre identities, along with the Pythagorean Theorem, all for the hybrid form of the hyperbolic Horadam sine and cosine matrix functions. Furthermore, the hybrid forms of the quasi-sine Horadam matrix function and three-dimensional Horadam matrix spiral related to these matrix functions are presented, offering new insights into their mathematical properties.

References

  • Al-Mohy, A. H., Higham, N. J., (2009), A new scaling and squaring algorithm for the matrix exponential, SIAM Journal on Matrix Analysis and Applications, 31(3), pp. 970-989. https://doi.org/10.1137/09074721X
  • Bahşi, M., Mersin, E. Ö., (2022), On the Hyperbolic Horadam Matrix Functions, Hacettepe Journal of Mathematics and Statistics, 51(6), pp. 1550-1562. https://doi.org/10.15672/hujms.1092305
  • Bahşi, M., Solak, S., (2019), Hyperbolic Horadam functions, Gazi University Journal of Science, 32(3), pp. 956-965. https://doi.org/10.35378/gujs.441422
  • Bahşi, M., Solak, S., (2018), On the hyperbolic Fibonacci matrix functions, TWMS Journal of Applied and Engineering Mathematics, 8(2), pp. 454-465.
  • Belbachir, H., Belkhir, A., (2018), On some generalizations of Horadam’s numbers, Filomat, 32(14), pp. 5037-5052. https://doi.org/10.2298/FIL1814037B
  • Defez, E., Sastre, J., Ib´a˜nez, J. J., Peinado, J., (2016), Solving engineering models using hyperbolic matrix functions, Applied Mathematical Modelling, 40(4), pp. 2837-2844. https://doi.org/10.1016/j.apm.2015.09.050
  • Defez, E., Sastre, J., Ib´a˜nez, J. J., Ruiz, P. A., (2009), Computing matrix functions solving coupled differential models, Mathematical and Computer Modelling, 50(5-6), pp. 831-839. https://doi.org/10.1016/j.mcm.2009.05.012
  • Defez, E., Sastre, J., Ib´a˜nez, J. J., Ruiz, P. A., (2013), Computing matrix functions arising in engineering models with orthogonal matrix polynomials, Mathematical and Computer Modelling, 57(7-8), pp. 1738-1743. https://doi.org/10.1016/j.mcm.2011.11.022
  • Defez, E., Jodar, L., (1998), Some applications of Hermite matrix polynomials series expansions, Journal of Computational and Applied Mathematics, 99(1-2), pp. 105-117. https://doi.org/10.1016/S0377- 0427(98)00149-6
  • Edson, M., Yayenie, O., (2009), A new generalization of Fibonacci sequences and extended Binet’s formula, Integers, 9(6), pp. 639–654. https://doi.org/10.1515/INTEG.2009.051
  • Falc´on, S., Plaza, ´A., (2007), On the Fibonacci k-numbers, Chaos, Solitons & Fractals, 32(5), pp. 1615-1624. https://doi.org/10.1016/j.chaos.2006.09.022
  • Hargreaves, G. I., Higham, N. J., (2005), Efficient algorithms for the matrix cosine and sine, Numerical Algorithms, 40(4), pp. 383-400. https://doi.org/10.1007/s11075-005-8141-0
  • He, T. X., Shiue, P. J. S., (2009), On sequences of numbers and polynomials defined by linear recurrence relations of order 2, International Journal of Mathematics & Mathematical Sciences, 709386. https://doi.org/10.1155/2009/709386.
  • Higham, N. J., (2008), Functions of Matrices: Theory and Computation, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
  • Horadam, A. F., (1965), Basic properties of a certain generalized sequence of numbers, The Fibonacci Quarterly, 3(3), pp. 161-176. https://doi.org/10.1080/00150517.1965.12431416
  • Jodar, L., Navarro, E., Posso, A., Casaban, M., (2003), Constructive solution of strongly coupled continuous hyperbolic mixed problems, Applied Numerical Mathematics, 47(3-4), pp. 477-492. https://doi.org/10.1016/S0168-9274(03)00073-4
  • Kızılateş, C., (2020), A new generalization of Fibonacci hybrid and Lucas hybrid numbers, Chaos, Solitons & Fractals, 130, 109449. https://doi.org/10.1016/j.chaos.2019.109449
  • Kızılateş, C., (2021), New families of Horadam numbers associated with finite operators and their applications, Mathematical Methods in the Applied Sciences, 44(18), pp. 14371-14381. https://doi.org/10.1002/mma.7702
  • Kızılateş, C., (2022), A note on Horadam hybrinomials, Fundamental Journal of Mathematics and Applications, 5(1), pp. 1-9. https://doi.org/10.33401/fujma.993546
  • Kızılateş, C., Kone, T., (2023), On special spacelike hybrid numbers with Fibonacci divisor number components, Indian Journal of Pure and Applied Mathematics, 54(1), 279-287. https://doi.org/10.1007/s13226-022-00252-7
  • Kılıç, E., Tan, E., (2009), More general identities involving the terms of W(a, b; p, q), Ars Combinatoria, 93, pp. 459-461.
  • Koshy, T., (2001), Fibonacci and Lucas numbers with applications, Wiley-Interscience, New York.
  • Mersin, E. Ö., (2023), Hyperbolic Horadam hybrid functions, Notes on Number Theory and Discrete Mathematics, 29(2), pp. 389-401. https://doi.org/10.7546/nntdm.2023.23.2.389-401
  • Moore, G., (2011), Orthogonal polynomial expansions for the matrix exponential, Linear Algebra and its Applications, 435(3), pp. 537-559. https://doi.org/10.1016/j.laa.2010.09.021
  • Özdemir, M., (2018), Introduction to hybrid numbers, Advances in Applied Clifford Algebras, 28(11). https://doi.org/10.1007/s00006-018-0833-3
  • Pozar, D., (1991), Microwave Engineering, Addison-Wesley, New York.
  • Sastre, J., Ib´a˜nez, J. J., Defez, E., Ruiz, P. A., (2011), Accurate matrix exponential computation to solve coupled differential models in engineering, Mathematical and Computer Modelling, 54(7-8), pp. 1835-1840. https://doi.org/10.1016/j.mcm.2010.12.049
  • Sastre, J., Ib´a˜nez, J. J., Ruiz, P. A., Defez, E., (2013), Efficient computation of the matrix cosine, Applied Mathematics and Computation, 219, pp. 7575-7585. https://doi.org/10.1016/j.amc.2013.01.043
  • Shi, Y., Ding, F., Chen, T., (2006), 2-Norm based recursive design of transmultiplexers with designable filter length, Circuits, Systems and Signal Processing, 25, pp. 447-462. https://doi.org/10.1007/s00034-004-1029-8
  • Shi, Y., Fang, H., (2010), Kalman filter based identification for systems with randomly missing measurements in a network environment, International Journal of Control, 83(3), pp. 538-551. https://doi.org/10.1080/00207170903273987
  • Shi, Y., Yu, B., (2009), Output feedback stabilization of networked control systems with random delays modeled by Markov chains, IEEE Transactions on Automatic Control, 54(7), pp. 1668-1674. https://doi.org/10.1109/TAC.2009.2020638
  • Soykan, Y., (2023), On generalized Fibonacci polynomials: Horadam polynomials, Earthline Journal of Mathematical Sciences, 11(1), pp. 23-114. https://doi.org/10.34198/ejms.11123.23114
  • Szynal-Liana, A., (2018), The Horadam hybrid numbers, Discussiones Mathematicae General Algebra and Applications, 38(1), pp. 91-98. https://doi.org/10.7151/dmgaa.1287
  • Szynal-Liana, A., Wloch, I., (2018), On Pell and Pell–Lucas Hybrid Numbers, Commentationes Mathematicae, 58(1-2), pp. 11-17.
  • Szynal-Liana, A., Wloch, I., (2019), On Jacopsthal and Jacopsthal-Lucas hybrid numbers, Annales Mathematicae Silesianae, 33(1), pp. 276-283. https://doi.org/10.2478/amsil-2018-0009
  • Szynal-Liana A., Wloch I., (2019), The Fibonacci hybrid numbers. Utilitas Math., 110, pp. 3–10.
  • Szynal-Liana, A., Wloch, I., (2020), Introduction to Fibonacci and Lucas hybrinomials, Complex Variables and Elliptic Equations, 65(10), pp. 1736-1747. https://doi.org/10.1080/17476933.2019.1681416
  • Şentürk, T. C., Bilgici, G., Daşdemir, A., Ünal, Z., (2020), A study on Horadam hybrid numbers, Turkish Journal of Mathematics, 44(4), pp. 1212-1221. https://doi.org/10.3906/mat-1908-77
  • Taşcı, D., Sevgi, E., (2021), Some properties between Mersenne, Jacobsthal and Jacobsthal-Lucas hybrid numbers, Chaos, Solitons and Fractals, 146, 110862. https://doi.org/10.1016/j.chaos.2021.110862
  • Yayenie, O., (2011), A note on generalized Fibonacci sequences, Applied Mathematics and Computation, 217(12), pp. 5603-5611. https://doi.org/10.1016/j.amc.2010.12.038
  • Yazlık, Y., Taşkara, N., (2012), A note on generalized k-Horadam sequence, Computers & Mathematics with Applications, 63(1), pp. 36-41. https://doi.org/10.1016/j.camwa.2011.10.055
  • Zhang, J.B., Ding, F., Shi, Y., (2009), Self-tuning control based on multi-innovation stochastic gradient parameter estimation, Systems and Control Letters, 58(1), pp. 69-75. https://doi.org/10.1016/j.sysconle.2008.08.005
There are 42 citations in total.

Details

Primary Language English
Subjects Algebra and Number Theory
Journal Section Research Articles
Authors

Efruz Özlem Mersin 0000-0001-6260-9063

Publication Date October 1, 2025
Submission Date November 21, 2024
Acceptance Date February 24, 2025
Published in Issue Year 2025 Volume: 15 Issue: 10

Cite