Research Article
BibTex RIS Cite

Year 2023, Volume: 6 Issue: 2, 43 - 52, 01.07.2023
https://doi.org/10.32323/ujma.1236596

Abstract

References

  • [1] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, Mathematics, (2002), 1–39.
  • [2] G. Perelman, Ricci flow with surgery on three manifolds, http://arXiv.org/abs/math/0303109, (2003), 1–22.
  • [3] R. Sharma, Certain results on k-contact and (k;m)􀀀contact manifolds, J. Geom., 89 (2008), 138–147.
  • [4] S. R. Ashoka, C. S. Bagewadi, G. Ingalahalli, Certain results on Ricci Solitons in a􀀀Sasakian manifolds, Hindawi Publ. Corporation, Geometry, 2013, Article ID 573925, (2013), 4 Pages.
  • [5] S. R. Ashoka, C. S. Bagewadi, G. Ingalahalli, A geometry on Ricci solitons in (LCS)n manifolds, Diff. Geom.-Dynamical Systems, 16 (2014), 50–62.
  • [6] C. S. Bagewadi, G. Ingalahalli, Ricci solitons in Lorentzian-Sasakian manifolds, Acta Math. Acad. Paeda. Nyire., 28 (2012), 59–68.
  • [7] G. Ingalahalli, C. S. Bagewadi, Ricci solitons in a􀀀Sasakian manifolds, ISRN Geometry, 2012, Article ID 421384, (2012), 13 Pages.
  • [8] C. L. Bejan, M. Crasmareanu, Ricci Solitons in manifolds with quasi-contact curvature, Publ. Math. Debrecen, 78 (2011), 235–243.
  • [9] A. M. Blaga, h􀀀Ricci solitons on para-kenmotsu manifolds, Balkan J. Geom. Appl., 20 (2015), 1–13.
  • [10] S. Chandra, S. K. Hui, A. A. Shaikh, Second order parallel tensors and Ricci solitons on (LCS)n-manifolds, Commun. Korean Math. Soc., 30 (2015), 123–130.
  • [11] B. Y. Chen, S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan J. Geom. Appl., 19 (2014), 13–21.
  • [12] S. Deshmukh, H. Al-Sodais, H. Alodan, A note on Ricci solitons, Balkan J. Geom. Appl., 16 (2011), 48–55.
  • [13] C. He, M. Zhu, Ricci solitons on Sasakian manifolds, arxiv:1109.4407V2, [Math DG], (2011).
  • [14] M. Atc¸eken, T. Mert, P. Uygun, Ricci-Pseudosymmetric (LCS)n􀀀manifolds admitting almost h􀀀Ricci solitons, Asian Journal of Math. and Computer Research, 29(2), (2022), 23–32.
  • [15] H. Nagaraja, C. R. Premalatta, Ricci solitons in Kenmotsu manifolds, J. Math. Analysis, 3(2), (2012), 18–24.
  • [16] M. M. Tripathi, Ricci solitons in contact metric manifolds, arxiv:0801,4221 V1, [Math DG], (2008).
  • [17] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Volume 203 of Progress in Mathematics, Birkhauser Boston, Inc., Boston, MA, USA, 2nd edition, 2010.
  • [18] P. Alegre, D.E. Blair, A. Carriazo, Generalized Sasakian space form, Israel Journal of Mathematics, 141 (2004), 157–183.
  • [19] P. Alegre, A. Carriazo, Semi-Riemannian generalized Sasakian space forms, Bulletin of the Malaysian Mathematical Sciences Society, 41(1) (2001), 1–14.
  • [20] J. T Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J., 61 (2) (2009), 205–212.

On the Almost $\eta-$Ricci Solitons on Pseudosymmetric Lorentz Generalized Sasakian Space Forms

Year 2023, Volume: 6 Issue: 2, 43 - 52, 01.07.2023
https://doi.org/10.32323/ujma.1236596

Abstract

In this paper, we consider Lorentz generalized Sasakian space forms admitting almost $\eta-$Ricci solitons in some curvature tensors. Ricci pseudosymmetry concepts of \ Lorentz generalized Sasakian space forms admitting $\eta-$Ricci soliton have introduced according to the choice of some special curvature tensors such as Riemann, concircular, projective, $\mathcal{M-}$projective, $W_{1}$ and $W_{2}.$ Then, again according to the choice of the curvature tensor, necessary conditions are given for Lorentz generalized Sasakian space form admitting $\eta-$Ricci soliton to be Ricci semisymmetric. Then some characterizations are obtained and some classifications have made.

References

  • [1] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, Mathematics, (2002), 1–39.
  • [2] G. Perelman, Ricci flow with surgery on three manifolds, http://arXiv.org/abs/math/0303109, (2003), 1–22.
  • [3] R. Sharma, Certain results on k-contact and (k;m)􀀀contact manifolds, J. Geom., 89 (2008), 138–147.
  • [4] S. R. Ashoka, C. S. Bagewadi, G. Ingalahalli, Certain results on Ricci Solitons in a􀀀Sasakian manifolds, Hindawi Publ. Corporation, Geometry, 2013, Article ID 573925, (2013), 4 Pages.
  • [5] S. R. Ashoka, C. S. Bagewadi, G. Ingalahalli, A geometry on Ricci solitons in (LCS)n manifolds, Diff. Geom.-Dynamical Systems, 16 (2014), 50–62.
  • [6] C. S. Bagewadi, G. Ingalahalli, Ricci solitons in Lorentzian-Sasakian manifolds, Acta Math. Acad. Paeda. Nyire., 28 (2012), 59–68.
  • [7] G. Ingalahalli, C. S. Bagewadi, Ricci solitons in a􀀀Sasakian manifolds, ISRN Geometry, 2012, Article ID 421384, (2012), 13 Pages.
  • [8] C. L. Bejan, M. Crasmareanu, Ricci Solitons in manifolds with quasi-contact curvature, Publ. Math. Debrecen, 78 (2011), 235–243.
  • [9] A. M. Blaga, h􀀀Ricci solitons on para-kenmotsu manifolds, Balkan J. Geom. Appl., 20 (2015), 1–13.
  • [10] S. Chandra, S. K. Hui, A. A. Shaikh, Second order parallel tensors and Ricci solitons on (LCS)n-manifolds, Commun. Korean Math. Soc., 30 (2015), 123–130.
  • [11] B. Y. Chen, S. Deshmukh, Geometry of compact shrinking Ricci solitons, Balkan J. Geom. Appl., 19 (2014), 13–21.
  • [12] S. Deshmukh, H. Al-Sodais, H. Alodan, A note on Ricci solitons, Balkan J. Geom. Appl., 16 (2011), 48–55.
  • [13] C. He, M. Zhu, Ricci solitons on Sasakian manifolds, arxiv:1109.4407V2, [Math DG], (2011).
  • [14] M. Atc¸eken, T. Mert, P. Uygun, Ricci-Pseudosymmetric (LCS)n􀀀manifolds admitting almost h􀀀Ricci solitons, Asian Journal of Math. and Computer Research, 29(2), (2022), 23–32.
  • [15] H. Nagaraja, C. R. Premalatta, Ricci solitons in Kenmotsu manifolds, J. Math. Analysis, 3(2), (2012), 18–24.
  • [16] M. M. Tripathi, Ricci solitons in contact metric manifolds, arxiv:0801,4221 V1, [Math DG], (2008).
  • [17] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Volume 203 of Progress in Mathematics, Birkhauser Boston, Inc., Boston, MA, USA, 2nd edition, 2010.
  • [18] P. Alegre, D.E. Blair, A. Carriazo, Generalized Sasakian space form, Israel Journal of Mathematics, 141 (2004), 157–183.
  • [19] P. Alegre, A. Carriazo, Semi-Riemannian generalized Sasakian space forms, Bulletin of the Malaysian Mathematical Sciences Society, 41(1) (2001), 1–14.
  • [20] J. T Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J., 61 (2) (2009), 205–212.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Tuğba Mert 0000-0001-8258-8298

Mehmet Atçeken 0000-0002-1242-4359

Submission Date January 16, 2023
Acceptance Date April 3, 2023
Publication Date July 1, 2023
Published in Issue Year 2023 Volume: 6 Issue: 2

Cite

APA Mert, T., & Atçeken, M. (2023). On the Almost $\eta-$Ricci Solitons on Pseudosymmetric Lorentz Generalized Sasakian Space Forms. Universal Journal of Mathematics and Applications, 6(2), 43-52. https://doi.org/10.32323/ujma.1236596
AMA Mert T, Atçeken M. On the Almost $\eta-$Ricci Solitons on Pseudosymmetric Lorentz Generalized Sasakian Space Forms. Univ. J. Math. Appl. July 2023;6(2):43-52. doi:10.32323/ujma.1236596
Chicago Mert, Tuğba, and Mehmet Atçeken. “On the Almost $\eta-$Ricci Solitons on Pseudosymmetric Lorentz Generalized Sasakian Space Forms”. Universal Journal of Mathematics and Applications 6, no. 2 (July 2023): 43-52. https://doi.org/10.32323/ujma.1236596.
EndNote Mert T, Atçeken M (July 1, 2023) On the Almost $\eta-$Ricci Solitons on Pseudosymmetric Lorentz Generalized Sasakian Space Forms. Universal Journal of Mathematics and Applications 6 2 43–52.
IEEE T. Mert and M. Atçeken, “On the Almost $\eta-$Ricci Solitons on Pseudosymmetric Lorentz Generalized Sasakian Space Forms”, Univ. J. Math. Appl., vol. 6, no. 2, pp. 43–52, 2023, doi: 10.32323/ujma.1236596.
ISNAD Mert, Tuğba - Atçeken, Mehmet. “On the Almost $\eta-$Ricci Solitons on Pseudosymmetric Lorentz Generalized Sasakian Space Forms”. Universal Journal of Mathematics and Applications 6/2 (July2023), 43-52. https://doi.org/10.32323/ujma.1236596.
JAMA Mert T, Atçeken M. On the Almost $\eta-$Ricci Solitons on Pseudosymmetric Lorentz Generalized Sasakian Space Forms. Univ. J. Math. Appl. 2023;6:43–52.
MLA Mert, Tuğba and Mehmet Atçeken. “On the Almost $\eta-$Ricci Solitons on Pseudosymmetric Lorentz Generalized Sasakian Space Forms”. Universal Journal of Mathematics and Applications, vol. 6, no. 2, 2023, pp. 43-52, doi:10.32323/ujma.1236596.
Vancouver Mert T, Atçeken M. On the Almost $\eta-$Ricci Solitons on Pseudosymmetric Lorentz Generalized Sasakian Space Forms. Univ. J. Math. Appl. 2023;6(2):43-52.

 23181

Universal Journal of Mathematics and Applications 

29207               

Creative Commons License  The published articles in UJMA are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.