Iterative Approximation for Mean Nonexpansive Mappings in Uniformly Convex Spaces with a Fractional Volterra Application
Year 2025,
Volume: 8 Issue: 4, 199 - 210, 11.12.2025
Muhammet Knefati
,
Vatan Karakaya
Abstract
This paper investigates fixed point theory for mean nonexpansive mappings in $p$-uniformly convex metric spaces. It first establishes the existence of fixed points together with a demiclosedness principle in this setting. Building on these foundations, the two-step Karakaya iteration scheme is introduced, and a detailed convergence analysis is provided. In particular, both a $\Delta$-convergence theorem and a strong convergence theorem for mean nonexpansive mappings are proved. To illustrate the applicability of the results, new examples are constructed that clarify the scope of the assumptions. Furthermore, a numerical application to a nonlinear fractional Volterra integral equation within the framework of a $p$-uniformly convex metric space is presented. The existence of a Bochner solution is demonstrated and approximated using the Karakaya iteration scheme, with its numerical performance compared to that of the S-iteration and Thakur schemes.
References
-
[1] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci., 54(4) (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041
-
[2] D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr., 30(3-4) (1965), 251–258. https://doi.org/10.1002/mana.19650300312
-
[3] W. A. Kirk, Geodesic geometry and fixed point theory, Seminar of Mathematical Analysis, Seville, Spain, University of Malaga and Seville, 64 (2003), 195–225.
-
[4] W. A. Kirk, Geodesic geometry and fixed point theory II, International Conference on Fixed Point Theory and Applications, Yokohama Publ., (2004), 113–142.
-
[5] S. H. Khan, R. Anjum, N. Ismail, Introducing monotone enriched nonexpansive mappings for fixed point approximation in ordered CAT(0) spaces, Computation, 13(4) (2025), Article ID 81. https://doi.org/10.3390/computation13040081
-
[6] M. Rastgoo, A. Abkar, A new iteration process for approximation of fixed points of mean nonexpansive mappings in CAT(0) spaces, Cogent Mathematics, 4(1) (2017), Article ID 1396642. https://doi.org/10.1080/23311835.2017.1396642
-
[7] S. Temir, Approximating fixed points of the SP*-iteration for generalized nonexpansive mappings in CAT(0) spaces, Creat. Math. Inform., 34(1) (2025), 113-132. https://doi.org/10.37193/CMI.2025.01.11
-
[8] A. Naor, L. Silberman, Poincaré inequalities, embeddings, and wild groups, Compositio Math., 147(5) (2011), 1546–1572. https://doi.org/10.1112/S0010437X11005343
-
[9] J. Puiwong, S. Saejung, On convergence theorems for single-valued and multi-valued mappings in p-uniformly convex metric spaces, Carpathian J. Math., 37(3) (2021), 513–527. https://doi.org/10.37193/CJM.2021.03.13
-
[10] S. S. Zhang, About fixed point theorem for mean nonexpansive mapping in Banach spaces, J. Sichuan Univ., 2 (1975), 67–68.
-
[11] C. X. Wu, L. J. Zhang, Fixed points for mean nonexpansive mappings, Acta Math. Appl. Sin. Engl. Ser., 23(3) (2007), 489–494. https://doi.org/10.1007/s10255-007-0388-x
-
[12] Y. Yang, Y. Cui, Viscosity approximation methods for mean nonexpansive mappings in Banach spaces, Appl. Math. Sci., 2(13) (2008), 627–638.
-
[13] J. Zhou, Y. Cui, Fixed point theorems for mean nonexpansive mappings in CAT(0) spaces, Numer. Funct. Anal. Optim., 36(9) (2015), 1224–1238. https://doi.org/10.1080/01630563.2015.1060614
-
[14] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340(2) (2008), 1088–1095. http://dx.doi.org/10.1016/j.jmaa.2007.09.023
-
[15] M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften, Vol. 319, Springer, 1999.
-
[16] R. P. Agarwal, D. O’Regan, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8(1) (2007), 61–79.
-
[17] M. Bačák, S. Reich, The asymptotic behavior of a class of nonlinear semigroups in Hadamard spaces, J. Fixed Point Theory Appl., 16 (2014), 189–202. https://doi.org/10.1007/s11784-014-0202-3
-
[18] M. Bačák, I. Searston, B. Sims, Alternating projections in CAT(0) spaces, J. Math. Anal. Appl., 385(2) (2012), 599–607. https://doi.org/10.1016/j.jmaa. 2011.06.079
-
[19] D. Ariza-Ruiz, G. López-Acedo, A. Nicolae, The asymptotic behavior of the composition of firmly nonexpansive mappings, J. Optim. Theory Appl., 167 (2015), 409–429. https://doi.org/10.1007/s10957-015-0710-3
-
[20] K. Kuwae, Jensen’s inequality on convex spaces, Calc. Var. Partial Differ. Equ., 49 (2014), 1359–1378. https://doi.org/10.1007/s00526-013-0625-5
-
[21] M. Knefati, V. Karakaya, Fixed point theorems for operators with certain condition in p-uniformly convex metric spaces, Numer. Funct. Anal. Optim., 43(16) (2022), 1884–1900. https://doi.org/10.1080/01630563.2022.2141256
-
[22] T. C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc., 60 (1976), 179–182. https://doi.org/10.1090/S0002-9939-1976-0423139-X
-
[23] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
-
[24] B. S. Thakur, D. Thakur, M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings, Appl. Math. Comput., 275 (2016), 147–155. https://doi.org/10.1016/j.amc.2015.11.065
-
[25] V. Karakaya, Y. Atalan, K. Doğan, N. El Houda Bouzara, Some fixed point results for a new three steps iteration process in Banach spaces, Fixed Point Theory, 18(2) (2017), 625-640. https://doi.org/10.24193/fpt-ro.2017.2.50
-
[26] K. Goebel, W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, Vol. 28, Cambridge University Press, 1990.
-
[27] H. F. Senter, W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44 (1974), 375–380. https://doi.org/10.1090/S0002-9939-1974-0346608-8
-
[28] S. Saejung, S. Suantai, P. Yotkaew, A note on “Common fixed point of multistep Noor iteration with errors for a finite family of generalized asymptotically quasi-nonexpansive mappings”, Abstr. Appl. Anal., 2009(1) (2009), Article ID 283461. https://doi.org/10.1155/2009/283461
-
[29] A. G. Aksoy, S. Jin, The apple doesn’t fall far from the (metric) tree: The equivalence of definitions, arXiv preprint arXiv:1306.6092 (2013). https://arxiv.org/abs/1306.6092
-
[30] V. I. Bogachev, Measure Theory, Vol. I, Springer Berlin, Heidelberg, 2007.