Year 2018,
Volume: 1 Issue: 2, 89 - 97, 26.06.2018
Sudhakar Chaubey
,
Sunil Kr Yadav
References
- [1] Robert Osserman, Curvature in the Eighties, The American mathematical monthly 97 (8), (1990), 731-756.
- [2] ´E . Cartan, Surune classe remarquable d’espaces de Riemannian, Bull. Soc. Math. France 54 (1926), 214- 264.
- [3] ´E . Cartan, Le cons sur la g ´eeom´ etrie des espaces de Riemann, 2nd ed., Paris, 1946.
- [4] B. O’ Neill, Semi-Riemannian geometry with applications to the relativity, Academic Press, New York- London, 1983.
- [5] M. M. Boothby and R. C. Wong, On contact manifolds, Anna. Math. 68 (1958), 421-450.
- [6] S. Sasaki and Y. Hatakeyama, On differentiable manifolds with certain structures which are closely related to almost contact structure, Tohoku Math. J. 13 (1961), 281-294.
- [7] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93-103.
- [8] S. K. Chaubey and A. A. Shaikh, On 3-dimensional Lorentzian concircular structure manifolds, Commun. Korean Math. Soc., 33 (2018)
https://doi.org/10.4134/CKMS.c180044.
- [9] S. K. Chaubey and R. H. Ojha, On the m-projective curvature tensor of a Kenmotsu manifold, Differential Geometry - Dynamical Systems 12 (2010), 52-60.
- [10] S. K. Chaubey, S. Prakash and R. Nivas, Some properties of mprojective curvature tensor in Kenmotsu manifolds, Bulletin of Math Analysis and Applications 4 (2012), 48-56.
- [11] S. K. Chaubey and C. S. Prasad, On generalized frecurrent Kenmotsu manifolds, TWMS J. App. Eng. Math. 5 (1) (2015), 1-9.
- [12] S. K. Yadav, S. K. Chaubey and D. L. Suthar, Certain results on almost Kenmotsu (k;m;n)spaces, Konuralp Journal of Mathematics 6 (1) (2018) 128-133.
- [13] S. K. Chaubey, A. C. Pandey, N. V. C. Shukla, Some properties of Kenmotsu manifolds admitting a semi-symmetric non-metric connection, arXiv:1801.03000v1 [math.DG] 9 Jan 2018.
- [14] S. K. Chaubey and R. H. Ojha, On a semi-symmetric non-metric connection, Filomat 26 (2) (2012), 269-275.
- [15] A. Taleshian and A. A. Hosseinzadeh, Some curvature properties of Kenmotsu manifolds, Proc. of the Nat. Academy of Sci. 85 (2015), 407-413.
- [16] A. Basari and C. Murathan, On generalized frecurrent Kenmotsu manifolds, Fen Derg. 3 (1) (2008), 91-97.
- [17] H. Ozturk, N. Aktan and C. Murathan, On aKenmotsu manifolds satisfying certain conditions, Applied sciences 12 (2010), 115-126.
- [18] K. Yano, Concircular geometry I, Concircular transformation, Proc. Imp. Acad. Tokyo 16 (1940), 195-200.
- [19] K. Yano, Concircular geometry I, Imp. Acad. Sci. of Japan 16 (1940), 195-200.
- [20] A. Friedmann and J. A. Schouten, ¨U ber die geometrie der halbsymmetrischen ¨ ubertragung, Math. Zeitschr 21 (1924), 211-223.
- [21] H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.
- [22] K. Yano, On semi-symmetric metric connection, Rev. Roumaine de Math. Pures et Appl. 15 (1970), 1579-1586.
- [23] J. V. Narlikar, General relativity and gravitation, The Macmillan co. of India, 1978.
- [24] H. Stephani, General relativity-An introduction to the theory of gravitational field, Cambridge Univ. Press, Cambridge, 1982.
- [25] D. E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976.
- [26] M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219 (1976), 277-290.
- [27] S. K. Chaubey and A. Kumar, Semi-symmetric metric T-connection in an almost contact metric manifold, International Mathematical Forum 5 (23) (2010), 1121-1129.
- [28] A. Sharfuddin and S. I. Husain, Semi-symmetric metric connections in almost contact manifolds, Tensor N. S. 30 (1976), 133-139.
- [29] T. Imai, Notes on semi-symmetric metric connections, Tensor N. S. 24 (1972), 293-296.
- [30] R. S. Mishra and S. N. Pandey, Semi-symmetric metric connections in an almost contact manifold, Indian J. Pure Appl. Math. 9 (6) (1978), 570-580.
- [31] A. Berman, Concircular curvature tensor of a semi-symmetric metric connection in a Kenmotsu manifold, Thai J. of Mathematics 13 (1) (2015), 245-257.
- [32] Sunil Yadav and D. L. Suthar, On three-dimensional quasi-Sasakian manifolds admitting semi-symmetric metric connection, international Journal of Physical Sciences 8 (17) (2013), 754-758.
- [33] P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian Space forms, Israel J. of Math. 141 (2004), 157-183.
- [34] U. K. Kim, Conformally flat generalized Sasakian-space forms and locally symmetric generalized Sasakian-space forms, Note Mat. 26 (2006), 55–67.
- [35] T. Takahashi, Sasakian fsymmetric spaces, Tohoku Math. J. 29 (1977), 91-113
Study of Kenmotsu manifolds with semi-symmetric metric connection
Year 2018,
Volume: 1 Issue: 2, 89 - 97, 26.06.2018
Sudhakar Chaubey
,
Sunil Kr Yadav
Abstract
The present paper deals with the study of Kenmotsu manifolds equipped with a semi-symmetric metric connection. The properties of $\eta-$parallel Ricci tensor, globally symmetric and $\phi-$symmetric Kenmotsu manifolds with the semi-symmetric metric connection are evaluated. In the end, we construct an example of a $3-$dimensional Kenmotsu manifold admitting semi-symmetric metric connection and verify our some results.
References
- [1] Robert Osserman, Curvature in the Eighties, The American mathematical monthly 97 (8), (1990), 731-756.
- [2] ´E . Cartan, Surune classe remarquable d’espaces de Riemannian, Bull. Soc. Math. France 54 (1926), 214- 264.
- [3] ´E . Cartan, Le cons sur la g ´eeom´ etrie des espaces de Riemann, 2nd ed., Paris, 1946.
- [4] B. O’ Neill, Semi-Riemannian geometry with applications to the relativity, Academic Press, New York- London, 1983.
- [5] M. M. Boothby and R. C. Wong, On contact manifolds, Anna. Math. 68 (1958), 421-450.
- [6] S. Sasaki and Y. Hatakeyama, On differentiable manifolds with certain structures which are closely related to almost contact structure, Tohoku Math. J. 13 (1961), 281-294.
- [7] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. 24 (1972), 93-103.
- [8] S. K. Chaubey and A. A. Shaikh, On 3-dimensional Lorentzian concircular structure manifolds, Commun. Korean Math. Soc., 33 (2018)
https://doi.org/10.4134/CKMS.c180044.
- [9] S. K. Chaubey and R. H. Ojha, On the m-projective curvature tensor of a Kenmotsu manifold, Differential Geometry - Dynamical Systems 12 (2010), 52-60.
- [10] S. K. Chaubey, S. Prakash and R. Nivas, Some properties of mprojective curvature tensor in Kenmotsu manifolds, Bulletin of Math Analysis and Applications 4 (2012), 48-56.
- [11] S. K. Chaubey and C. S. Prasad, On generalized frecurrent Kenmotsu manifolds, TWMS J. App. Eng. Math. 5 (1) (2015), 1-9.
- [12] S. K. Yadav, S. K. Chaubey and D. L. Suthar, Certain results on almost Kenmotsu (k;m;n)spaces, Konuralp Journal of Mathematics 6 (1) (2018) 128-133.
- [13] S. K. Chaubey, A. C. Pandey, N. V. C. Shukla, Some properties of Kenmotsu manifolds admitting a semi-symmetric non-metric connection, arXiv:1801.03000v1 [math.DG] 9 Jan 2018.
- [14] S. K. Chaubey and R. H. Ojha, On a semi-symmetric non-metric connection, Filomat 26 (2) (2012), 269-275.
- [15] A. Taleshian and A. A. Hosseinzadeh, Some curvature properties of Kenmotsu manifolds, Proc. of the Nat. Academy of Sci. 85 (2015), 407-413.
- [16] A. Basari and C. Murathan, On generalized frecurrent Kenmotsu manifolds, Fen Derg. 3 (1) (2008), 91-97.
- [17] H. Ozturk, N. Aktan and C. Murathan, On aKenmotsu manifolds satisfying certain conditions, Applied sciences 12 (2010), 115-126.
- [18] K. Yano, Concircular geometry I, Concircular transformation, Proc. Imp. Acad. Tokyo 16 (1940), 195-200.
- [19] K. Yano, Concircular geometry I, Imp. Acad. Sci. of Japan 16 (1940), 195-200.
- [20] A. Friedmann and J. A. Schouten, ¨U ber die geometrie der halbsymmetrischen ¨ ubertragung, Math. Zeitschr 21 (1924), 211-223.
- [21] H. A. Hayden, Subspaces of a space with torsion, Proc. London Math. Soc. 34 (1932), 27-50.
- [22] K. Yano, On semi-symmetric metric connection, Rev. Roumaine de Math. Pures et Appl. 15 (1970), 1579-1586.
- [23] J. V. Narlikar, General relativity and gravitation, The Macmillan co. of India, 1978.
- [24] H. Stephani, General relativity-An introduction to the theory of gravitational field, Cambridge Univ. Press, Cambridge, 1982.
- [25] D. E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976.
- [26] M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219 (1976), 277-290.
- [27] S. K. Chaubey and A. Kumar, Semi-symmetric metric T-connection in an almost contact metric manifold, International Mathematical Forum 5 (23) (2010), 1121-1129.
- [28] A. Sharfuddin and S. I. Husain, Semi-symmetric metric connections in almost contact manifolds, Tensor N. S. 30 (1976), 133-139.
- [29] T. Imai, Notes on semi-symmetric metric connections, Tensor N. S. 24 (1972), 293-296.
- [30] R. S. Mishra and S. N. Pandey, Semi-symmetric metric connections in an almost contact manifold, Indian J. Pure Appl. Math. 9 (6) (1978), 570-580.
- [31] A. Berman, Concircular curvature tensor of a semi-symmetric metric connection in a Kenmotsu manifold, Thai J. of Mathematics 13 (1) (2015), 245-257.
- [32] Sunil Yadav and D. L. Suthar, On three-dimensional quasi-Sasakian manifolds admitting semi-symmetric metric connection, international Journal of Physical Sciences 8 (17) (2013), 754-758.
- [33] P. Alegre, D. E. Blair and A. Carriazo, Generalized Sasakian Space forms, Israel J. of Math. 141 (2004), 157-183.
- [34] U. K. Kim, Conformally flat generalized Sasakian-space forms and locally symmetric generalized Sasakian-space forms, Note Mat. 26 (2006), 55–67.
- [35] T. Takahashi, Sasakian fsymmetric spaces, Tohoku Math. J. 29 (1977), 91-113